Với a,b,c thuộc N sao cho ab=bc=ca. Chứng minh rằng a=b=c
cho tam giác ABC có B=60, C<A
a,chứng minh rằng AB<BC
b,trên BC lấy D sao cho BD=BA chứng minh rằng tam giác ABD đều
c,AB,BC,CA
a) xét ΔABC ta có
C<A
=> AB < BC ( quan hệ giữa góc và cạnh đối diện trong Δ)
b)xét ΔABD ta có
BD = BA
=> ΔABD là Δ cân tại B
mà B=60o
=> ΔABD làΔ đều
Tam giác ABC có BC = a; CA = b; AB = c. Gọi M,N,P lần lượt là trung điểm
của AB, BC, CA. Các điểm D,E,F thứ tự thuộc MN, NP, PM sao cho \(\frac{DM}{DN}=\frac{c}{a};\frac{EN}{EP}=\frac{a}{b};\frac{FP}{FM}=\frac{b}{c}\)Chứng minh rằng AF, BD, CE đồng quy.
cho 3 số nguyên a,b,c biết rằng
a+b+c>0
ab+bc+ca>0
a.b.c>0
chứng minh rằng a,b,c thuộc tập hợp N*
vì a+b+c>0,ab+bc+ca>0 và a.b.c>0 nên a,b,c thuộc tập hợp N*
Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD. a) Chứng minh ΔAHB = ΔDBH. b) Chứng minh AB//HD. c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH. d) Tính góc ACB , biết góc BDH= 350 . Bài 6 : Cho tam giác ABC cân tại A và có . 1. Tính và 2. Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC. Gia sư Thành Được www.daythem.edu.vn Bài 7 : Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE. 1. Chứng minh : DB = EC. 2. Gọi O là giao điểm của BD và EC. Chứng minh : OBC và ODE là cân. 3. Chứng minh rằng : DE // BC. Bài 8 : Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB. 1. Chứng minh : CD // EB. 2. Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF. Bài 9 : Cho tam giác ABC vuông tại A có . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh : 1. Tam giác ACE đều. 2. A, E, F thẳng hàng. Bài 10 : Cho tam giác ABC vuông góc tại A có góc B = 75º; BC = 10 cm . a) Tính góc C. b) Trên cạnh BA kéo dài về phía A đoạn AD = AB, Tính diện tích ABD (Gợi ý: Hạ đường cao sẽ có vuông với góc nhọn = 30º )
Bài 12. Cho tam giác ABC vuông cân tại A, điểm D thuộc cạnh AB, điểm E thuộc cạnh AC sao cho AD = AE. Đường thắng đi qua D và vuông góc với BE cắt BC tại I. Đường thằng đi qua A và vuông góc với BE cắt BC tại K. a Lấy điểm N thuộc tia đối của tia AB sao cho AN = AD. Chứng minh rằng BELCN. b. Chứng minh rằng IK = KC.
a) Sửa đề: Chứng minh BDEC là hình thang cân
Ta có: AD+DB=AB(D nằm giữa A và B)
AE+EC=AC(E nằm giữa A và C)
mà AD=AE(gt)
và AB=AC(ΔABC vuông cân tại A)
nên DB=EC
\(\Rightarrow\frac{DB}{EC}=1\)
mà \(\frac{AD}{AE}=1\)(vì AD=AE)
nên \(\frac{AD}{AE}=\frac{DB}{EC}\)
hay \(\frac{AD}{DB}=\frac{AE}{EC}\)
Xét ΔABC có
\(\frac{AD}{DB}=\frac{AE}{EC}\)(cmt)
Do đó: DE//BC(định lí Ta lét đảo)
Ta có: ΔABC vuông cân tại A(gt)
\(\Rightarrow\widehat{ACB}=\widehat{ABC}=45^0\)(số đo của các góc ở đáy trong ΔABC vuông cân tại A)
hay \(\widehat{DBC}=\widehat{ECB}\)
Xét tứ giác BDEC có DE//BC(cmt)
nên BDEC là hình thang(định nghĩa hình thang)
Xét hình thang BDEC có \(\widehat{DBC}=\widehat{ECB}\)(cmt)
nên BDEC là hình thang cân(dấu hiệu nhận biết hình thang cân)
Cho tam giác ABC cân tại A. Lấy điểm M thuộc AB, điểm N thuộc tia đối của tia CA sao cho BM=CN. Đường thẳng vuông góc với AB kẻ từ B cắt đường thẳng vuông góc với AC kẻ từ C tại điểm O. Gọi H là giao điểm của AO và BC, kẻ HD vuông góc với AC(D thuộc AC)
a. Chứng minh rằng: Tam giác MON cân
b. Biết AH= 5 cm, HD=3 cm. Tính độ dài HC
c. Gọi F là giao điểm của MN và BC. Chứng minh rằng OF vuông góc với MN
cho tam giác ABC cân tại A ( BC< AB)
Lấy D thuộc AB sao cho CD=AB
a, chứng minh góc ACB = góc CDB
b, trên tia đối của tia CA lấy E sao cho CE=AD. Chứng minh BE=BA
Viết Giả thiết - Kết luận cho các bài toán này dùm mik đi
Bài 1. Cho tam giác ABC cân tại A, có A=100⁰.Lấy điểm M thuộc cạnh AB, điểm N thuộc cạnh AC sao cho AM = AN. Chứng minh rằng:
a) MN//BC
b) Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD, kẻ CK vuông góc với AE. Chứng minh: BH = CK
c)△ABH =△ACK
Bài 2:Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC (H BC).
a) Chứng minh: HB = HC.
b) Kẻ HD丄AB (D ∈ AB), HE丄AC (E∈ AC). Chứng minh tam giác ADE cân.
c) Chứng minh DE // BC
Bài 3 .Cho ΔABC vuông tại A . Tia phân giác của góc C cắt AB tại I. Kẻ IM vuông góc với BC tại M, hai đường thẳng CA và MI cắt nhau tại N.
a. Chứng minh:ΔACI =ΔMCI.
b. Chứng minh: NIB là tam giác cân.
Bài 4. Cho tam giác ABC cân tại A. Kẻ AH⏊BC , H∈BC
a) Chứng minh △ABH = △ ACH
b) Kẻ HM丄AB, M∈AB ; HN丄AC, N∈AC . Chứng minh MB = NC
c) Gọi O là giao điểm AH và MN. Chứng minh MN//BC
Bài 5 Cho hai đoạn thẳng MN và PQ cắt nhau tại trung điểm O của mỗi đoạn.
Chứng minh rằng : a, MQO = NPO ; b, MQ ∥ NP
Bài 6 Cho tam giác ABC vuông tại A có AB = AC. Gọi K là trung điểm của BC
a. Chứng minh AKB = AKC
b. Chứng minh AK vuông góc BC
Bài 7 Cho tam giác ABC cân tại A và có góc A=50⁰
1. Tính góc B và góc C
2. Lấy D ∈ AB, E ∈ AC sao cho AD = AE. Chứng minh ΔADE cân
3. Chứng minh DE // BC.
Bài 8 :Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.
1. Chứng minh : DB = EC.
2. Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC là tam giác cân.
Cho nửa đường tròn tâm $O,$ đường kính $AB.$ Lấy điểm $C$ thuộc nửa đường tròn (C khác A, khác B) sao cho $CA<CB.$ Vẽ OM vuông góc với AC, ON vuông góc với BC (M thuộc AC. N thuộc BC)a) Chứng minh tứ giác $OMCN$ là hình chữ nhậtb)Tiếp tuyến tại A của nửa đường tròn O cắt BC tại E, vẽ CH vuông góc với AB (H thuộc AB). Chứng minh $EC\cdot CB=AH\cdot AB.$c) Tiếp tuyến tại B của nửa đường tròn tâm $O$ cắt $ON$ tại $F,$ $OM$ cắt $AE$ tại $I.$ Chứng minh $IF$ là tiếp tuyến của nửa đường tròn tâm $O.$Mọi người check giúp em bài hình với ạ.https://drive.google.com/file/d/1qqhvUUAc_kfoc7AjbeHkveRo2-h8FFpB/view?fbclid=IwAR2EWp0Rtc6eOqFfIyLi7TdGG0vyuNkpGQqe-7GPRtn2Ci8j1CKACXA8nMo
Bài 1:cho góc nhọn xOy và k là một điểm thuộc tia phân giác của góc xOy. Kẻ K vuông góc với Ox( A thuộc Ox), KB vuông góc với Ox(B thuộc Oy)
a) Chứng minh rằng: KA= CB b)đường thẳng DK cắt Ox tại D,đường thẳng AK cắt Oy tại E.Chứng minh ∆DKE cân c)Chứng minh OK vuông góc với DE và AB // DE
Bài 2:Cho ∆ ABC vuông góc tại A. Các tia phân giác của các góc A và B cắt nhau tại I. Kẻ ID vuông góc với AB,AE vuông góc với AC(D thuộc AB,E thuộc AC)
a) Chứng minh AD = AE b)Trên cạnh BC,lấy điểm H sao cho BH = BD.Chứng minh IH vuông góc với BC
c)Chứng minh CI là tia phân giác của góc ACB
d) Chứng minh AD = AB+AC-BC : 2
e) Tính độ dài các cạnh BC,ID. Biết rằng AB = 6 cm AC = 8 cm
Bài 3:Cho ∆ ABC vuông tại C. Kẻ CH vuông với AB tại H. Kẻ tia phân giác CM của góc ACH (M thuộc AH). Trên cạnh CA lấy điểm N sao cho CN = CH
a) Chứng minh ∆CNM = ∆CHM b)Chứng minh ∆MBC cân c)Gọi K là giao điểm của MN và CH. Chứng minh AC = CK d)Chứng minh CM vuông góc với AK
e)Tìm điều kiện của ∆ABC để H là trung điểm của CK
Bài 1:
a) Sửa đề: chứng minh KA=KB
Xét \(\Delta\)KAO vuông tại A và \(\Delta\)KBO vuông tại B có
KO là cạnh chung
\(\widehat{AOK}=\widehat{BOK}\)(do OK là tia phân giác của \(\widehat{AOB}\))
Do đó: \(\Delta\)KAO=\(\Delta\)KBO(cạnh huyền-góc nhọn)
Bài 2:
a) Xét tứ giác AEID có
\(\widehat{IEA}=90^0\)(do \(IE\perp AC\))
\(\widehat{EAD}=90^0\)(\(\widehat{BAC}=90^0,E\in AC,D\in AB\))
\(\widehat{IDA}=90^0\)(do \(ID\perp AB\))
Do đó: AEID là hình chữ nhật(dấu hiệu nhận biết hình chữ nhật)
Hình chữ nhật AEID có đường chéo AI là tia phân giác của \(\widehat{EAD}\)(do AI là tia phân giác của \(\widehat{BAC},E\in AC,D\in AB\))
nên AEID là hình vuông(dấu hiệu nhận biết hình vuông)
\(\Rightarrow\)AE=AD(đpcm)
b) Sửa đề: chứng minh BI vuông góc với HD
Xét \(\Delta\)HDB có HB=BD(gt)
nên \(\Delta\)HDB cân tại B(định nghĩa tam giác cân)
mà BI là đường phân giác ứng với cạnh HD
nên BI cũng là đường cao ứng với cạnh HD
\(\Rightarrow BI\perp HD\)(đpcm)
e) Áp dụng định lí pytago vào \(\Delta\)ABC vuông tại A, ta được
\(BC^2=AB^2+AC^2\)
hay \(BC=\sqrt{6^2+8^2}=10cm\)
Vậy: BC=10cm
Bài 3:
a) Xét \(\Delta\)CNM và \(\Delta\)CHM có
CN=CH(gt)
\(\widehat{NCM}=\widehat{HCM}\)(do tia CM là tia phân giác của \(\widehat{HCN}\))
CM chung
Do đó: \(\Delta\)CNM=\(\Delta\)CHM(c-g-c)