tìm giá trị nhỏ nhất của biểu thức:
P=x2-6x+11
Bài 6:Tìm giá trị lớn nhất của biểu thức
a) A=-x2+6x-11 b) B=5-8x-x2 c) C=4x-x2+1
Bài 7:Tìm giá trị nhỏ nhất của biểu thức
a) A=x2-6x+11 b) B=x2-2x+y2+4y+8 c) C=x2-4xy+5y2+10x-22y+28
Bài 6:
a) Ta có: \(A=-x^2+6x-11\)
\(=-\left(x^2-6x+11\right)\)
\(=-\left(x-3\right)^2-2\le-2\forall x\)
Dấu '=' xảy ra khi x=3
b) Ta có: \(B=-x^2-8x+5\)
\(=-\left(x^2+8x-5\right)\)
\(=-\left(x^2+8x+16-21\right)\)
\(=-\left(x+4\right)^2+21\le21\forall x\)
Dấu '=' xảy ra khi x=-4
c) Ta có: \(C=-x^2+4x+1\)
\(=-\left(x^2-4x-1\right)\)
\(=-\left(x^2-4x+4-5\right)\)
\(=-\left(x-2\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi x=2
Bài 7:
a) Ta có: \(x^2-6x+11\)
\(=x^2-6x+9+2\)
\(=\left(x-3\right)^2+2\ge2\forall x\)
Dấu '=' xảy ra khi x=3
Tìm giá trị nhỏ nhất của biểu thức:P=x^2 + 2y^2 +2xy-6x-8y+2024
Giải :(x2+2xy+y2)+y2-6x-8y+2024=(x+y)2-2(x+y)3+y2-2y+2024
=(x+y-3)2+(y2-2y+1)+2014=(x+y-3)2+(y-1)2+2014 >=2014
vì (x+y-3)2;(y-1)2>=0 với mọi x;y
nên Pmin=2014khi y=1;x=2
2024 đó !đúng 100% luôn !
Cho hai biểu thức A = x 2 - 6x +11 và B = 9 + 4x - x 2 .
a) Tìm giá trị nhỏ nhất của A.
b) Tìm giá trị lớn nhất của B.
Tìm giá trị lớn nhất (hoặc nhỏ nhất) của các biểu thức sau: A = x 2 - 6 x + 11
Ta có: A = x 2 - 6 x + 11 = x 2 - 2 . 3 x + 9 + 2 = x - 3 2 + 2
Vì x - 3 2 ≥ 0 nên x - 3 2 + 2 ≥ 2
Suy ra: A ≥ 2.
A = 2 khi và chỉ khi x - 3 = 0 suy ra x = 3
Vậy A = 2 là giá trị nhỏ nhất của biểu thức tại x =3.
BÀI 11:Tìm giá trị nhỏ nhất của biểu thức:
a. A = x2 – 6x + 11
b. B = 2x2 – 20x + 101
c. C = x2 – 4xy + 5y2 + 10x – 22y + 28
\(A=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\\ A_{min}=2\Leftrightarrow x=3\\ B=2\left(x^2-10x+25\right)+51=2\left(x-5\right)^2+51\ge51\\ B_{min}=51\Leftrightarrow x=5\\ C=\left[\left(x^2-4xy+4y^2\right)+10\left(x-2y\right)+25\right]+\left(y^2-2y+1\right)+2\\ C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\\ C_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y-5=2-5=-3\\y=1\end{matrix}\right.\)
a) \(A=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\)
\(minA=2\Leftrightarrow x=3\)
b) \(B=2\left(x^2-10x+25\right)+51=2\left(x-5\right)^2+51\ge51\)
\(minB=51\Leftrightarrow x=5\)
c) \(C=\left[x^2-2x\left(2y-5\right)+\left(2y-5\right)^2\right]+\left(y^2-2y+1\right)+2=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
\(minC=2\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
Giá trị nhỏ nhất của biểu thức x 2 - 6x + 11 là
Cho x, y là các số thực dương thỏa mãn x2+ y2=1. Tìm giá trị nhỏ nhất của biểu thức:
P= x + \(\dfrac{1}{x}\) + y + \(\dfrac{1}{y}\)
Điểm rơi: \(x=y=\frac{\sqrt{2}}{2}\)
Ta tách biểu thức được như sau: \(A=x+\frac{1}{x}+y+\frac{1}{y}=(x+\frac{1}{2x})+(y+\frac{1}{2y})+\frac{1}{2}(\frac{1}{2x}+\frac{1}{2y})\)
\(\geq 2\sqrt{x.\frac{1}{2x}}+2\sqrt{y.\frac{1}{2y}}+\frac{1}{2}.\frac{4}{x+y}=2\sqrt{2}+\frac{2}{x+y}\)
Áp dụng bất đẳng thức Bunhiacốpxki, ta lại có:
\((x+y)^2\leq 2(x^2+y^2)=2 \Rightarrow x+y\leq \sqrt{2}\)
\(\Rightarrow A\geq 3\sqrt{2}\)
Dấu bằng xảy ra khi \(x=y=\frac{\sqrt{2}}{2}\)
đây là những món quà mà bn sẽ nhận đc: 1: áo quần 2: tiền 3: đc nhiều người yêu quý 4: may mắn cả 5: luôn vui vẻ trong cuộc sống 6: đc crush thích thầm 7: học giỏi 8: trở nên xinh đẹp phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người,
Câu 1:Tìm giá trị lớn nhất của biểu thức:P=\(\dfrac{3x^2+6x+10}{x^2+2x+3}\); (xϵR)
Câu 2:Tìm giá trị lớn nhất của biểu thức:M=\(\dfrac{2x^2+6x+7}{x^2+3x+3}\); (xϵR)
\(P=\dfrac{3\left(x^2+2x+3\right)+1}{x^2+2x+3}=3+\dfrac{1}{x^2+2x+3}=3+\dfrac{1}{\left(x+1\right)^2+2}\le3+\dfrac{1}{2}=\dfrac{7}{2}\)
\(P_{max}=\dfrac{7}{2}\) khi \(x=-1\)
\(M=\dfrac{2\left(x^2+3x+3\right)+1}{x^2+3x+3}=2+\dfrac{1}{x^2+3x+3}=2+\dfrac{1}{\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}}\le2+\dfrac{1}{\dfrac{3}{4}}=\dfrac{10}{3}\)
\(M_{max}=\dfrac{10}{3}\) khi \(x=-\dfrac{3}{2}\)
a)Tìm giá trị nhỏ nhất của các biểu thức sau:
A = 25x2 - 10x + 11
B = (x - 3)2 + (11 - x)2
C = (x + 1)(x - 2)(x - 3)(x - 6)
b) Tìm giá trị lớn nhất của các các biểu thức sau:
D = 10x - 25x2 - 11
E = 19 - 6x - 9 x2
F = 2x - x2
c) Cho x và y thỏa mãn: x2 + 2xy + 6x + 2y2 + 8 = 0
Tìm giá trị lớn nhất và nhỏ nhất của biểu thức B = x + y + 2024
\(a,\\ A=25x^2-10x+11\\ =\left(5x\right)^2-2.5x.1+1^2+10\\ =\left(5x+1\right)^2+10\ge10\forall x\in R\\ Vậy:min_A=10.khi.5x+1=0\Leftrightarrow x=-\dfrac{1}{5}\\ B=\left(x-3\right)^2+\left(11-x\right)^2\\ =\left(x^2-6x+9\right)+\left(121-22x+x^2\right)\\ =x^2+x^2-6x-22x+9+121=2x^2-28x+130\\ =2\left(x^2-14x+49\right)+32\\ =2\left(x-7\right)^2+32\\ Vì:2\left(x-7\right)^2\ge0\forall x\in R\\ Nên:2\left(x-7\right)^2+32\ge32\forall x\in R\\ Vậy:min_B=32.khi.\left(x-7\right)=0\Leftrightarrow x=7\\Tương.tự.cho.biểu.thức.C\)
b:
\(D=-25x^2+10x-1-10\)
\(=-\left(25x^2-10x+1\right)-10\)
\(=-\left(5x-1\right)^2-10< =-10\)
Dấu = xảy ra khi x=1/5
\(E=-9x^2-6x-1+20\)
\(=-\left(9x^2+6x+1\right)+20\)
\(=-\left(3x+1\right)^2+20< =20\)
Dấu = xảy ra khi x=-1/3
\(F=-x^2+2x-1+1\)
\(=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1< =1\)
Dấu = xảy ra khi x=1