Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lương Đại
Xem chi tiết
Nguyễn Hoàng Minh
11 tháng 10 2021 lúc 15:53

\(c,=\left(31,8-21,8\right)^2=10^2=100\\ 12,\\ a,\left(n+2\right)^2-\left(n-2\right)^2\\ =\left(n+2-n+2\right)\left(n+2+n-2\right)\\ =4\cdot2n=8n⋮8\\ b,\left(n+7\right)^2-\left(n-5\right)^2\\ =\left(n+7-n+5\right)\left(n+7+n-5\right)\\ =12\left(2n+2\right)=24\left(n+1\right)⋮24\)

Nguyễn Nguyên Vũ
22 tháng 10 2021 lúc 13:50

tui chiuj

Khách vãng lai đã xóa
Tran Le Hoang Yen
Xem chi tiết
An Nguyễn Bá
27 tháng 10 2017 lúc 8:10

Bài 2:Tìm x biết

\\(\\left(4x+3\\right)^3+\\left(5-7x\\right)^3+\\left(3x-8\\right)^3=0\\)

\\(\\Leftrightarrow\\left[\\left(4x\\right)^3+3.\\left(4x\\right)^2.3+3.4x.3^2+3^3\\right]+\\left[5^3-3.5^2.7x+3.5.\\left(7x\\right)^2-\\left(7x\\right)^3\\right]+\\left[\\left(3x\\right)^3-3.\\left(3x\\right)^2.8+3.3x.8^2-8^3\\right]=0\\)

\\(\\Leftrightarrow64x^3+144x^2+108x+27+125-525x+735x^2-343x^3+27x^3-216x^2+576x-512=0\\)

\\(\\Leftrightarrow-252x^3+663x^2+159x-360=0\\)

\\(\\Leftrightarrow3\\left(-84x^3+221x^2+53x-120\\right)=0\\)

 

tthnew
26 tháng 7 2019 lúc 8:38

Bài 2: Đặt \(4x+3=a;5-7x=b;3x-8=c\Rightarrow a+b+c=0\)

Kết hợp với đề bài ta có \(\left\{{}\begin{matrix}a^3+b^3+c^3=0\\a+b+c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^3+b^3+c^3-3abc+3abc=0\\a+b+c=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc=0\left(1\right)\\a+b+c=0\left(2\right)\end{matrix}\right.\)

Thay (2) vào (1) suy ra \(3abc=0\Leftrightarrow a=0\text{hoặc }b=0\text{hoặc }c=0\)

+) a = 0 suy ra \(x=-\frac{3}{4}\)

+) b = 0 suy ra \(x=\frac{5}{7}\)

+) c = 0 suy ra \(x=\frac{8}{3}\)

Vậy...

Công chúa thủy tề
Xem chi tiết
Đinh Đức Hùng
15 tháng 7 2017 lúc 18:25

Ta có : \(n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n^4-1\right)=n^5-n\)

Vì \(n^5=n^{4+1}\) luôn có số tận cùng giống n

\(\Rightarrow n^5-n=\overline{.....0}⋮5\)

Hay \(n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮5\) (đpcm)

Mây❤️
Xem chi tiết
Linh Khánh
8 tháng 8 2018 lúc 11:57

Nè, bài này mình chỉ làm được hai câu a,b thoi nha

a) Chứng minh: 432 + 43.17 chia hết cho 16

432 + 43.17 = 43.(43 + 17) = 43.60 ⋮ 60

b) Chứng minh: n2.(n + 1) + 2n(x + 1) chia hết cho 6 với mọi n ∈ Z

n2(n + 1) + 2n(n + 1) = (n2 + 2n)(n + 1) = n(n + 1)(n + 2)

mà tích ba số tự nhiên liên tiếp chia hết cho 6 (một số chia hết cho 2, một số chia hết cho 3, UWCLL (2;3) = 1)

⇒n2 .(n + 1) + 2n(n + 1) + n(n + 1)(n + 2) ⋮ 6

Học đi
Xem chi tiết
Khôi Bùi
19 tháng 9 2018 lúc 22:05

\(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)

\(=2n^2-n^3-6n+3n^2+2-n+n^3+12n+8\)

\(=\left(2n^2+3n^2\right)+\left(n^3-n^3\right)+\left(12n-6n-n\right)+\left(8+2\right)\)

\(=5n^2+5n+10\)

\(=5\left(n^2+n+2\right)⋮5\forall n\in Z\left(đpcm\right)\)

Lan Hương
Xem chi tiết
Trần Minh Hoàng
11 tháng 4 2021 lúc 19:34

Do 2 + 1 chia hết cho 3 nên theo bổ đề LTE ta có \(v_3\left(2^{3^n}+1\right)=v_3\left(2+1\right)+v_3\left(3^n\right)=n+1\).

Do đó \(2^{3^n}+1⋮3^{n+1}\) nhưng không chia hết cho \(3^{n+2}\).

therese hương
Xem chi tiết
Eren
9 tháng 11 2018 lúc 19:00

(n2 + 3n - 1)(n + 2) - n3 + 2 = n3 + 5n2 + 5n - 2 - n3 + 2 = 5(n2 + n) ⋮ 5

ĐP Nhược Giang
9 tháng 11 2018 lúc 19:36

Ta có:

\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+2n^2+3n^2+6n-n-2-n^3+2\)

\(=5n^2+5n\)

\(=5\left(n^2+n\right)\) chia hết cho 5

Vậy \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\) chia hết cho5(đpcm)

VICTORY_Trần Thạch Thảo
Xem chi tiết
Minh Triều
5 tháng 7 2016 lúc 20:44

xem lại câu a nhé bạn

Nam Trần
Xem chi tiết
 Mashiro Shiina
14 tháng 7 2017 lúc 22:16

Phải sửa đề là chia hết cho 8 nha,mk có thử lại rồi: \(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)\)

\(=n\left(n+4\right)-1\left(n+4\right)-n\left(n+1\right)+4\left(n+1\right)\)

\(=n^2+4n-n+4-n^2+n+4n+4\)

\(=\left(n^2-n^2\right)+\left(4n+4n\right)+\left(n-n\right)+\left(4+4\right)\)

\(=0+8n+0+8\)

\(=8n+8\)

\(=8\left(n+8\right)⋮8\rightarrowđpcm\)