Voi x>=-2.Tim GTNN cua bieu thuc N=x^2+2x+1/(x+2)
Tim gtnn cua bieu thuc A=(2x^2+4x-1)/(x^2+1)
giai dum minh bai nay voi :c=x/2x-2+x^2+1/2-2x^2
a)tim x de a co nghia
b)rut gon bieu thuc c
c)tim gia tri cua x de bieu thuc kia =1/2
giúp mình cảm ơn nhìu nha !
tim GTNN cua bieu thuc N=\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
\(\sqrt{x^2-4x+5}=\sqrt{\left(x-2\right)^2+1}\ge1\)
Đặt \(\sqrt{x^2-4x+5}=a\Rightarrow a\ge1\)
\(M=2\left(x^2-4x+5\right)+\sqrt{x^2-4x+5}-4\)
\(M=2a^2+a-4=2a^2+3a-2a-3-1\)
\(M=a\left(2a+3\right)-\left(2a+3\right)-1\)
\(M=\left(a-1\right)\left(2a+3\right)-1\)
Do \(a\ge1\Rightarrow\left\{{}\begin{matrix}a-1\ge0\\2a+3>0\end{matrix}\right.\) \(\Rightarrow\left(a-1\right)\left(2a+3\right)\ge0\Rightarrow M\ge-1\)
\(\Rightarrow M_{min}=-1\) khi \(a=1\Leftrightarrow x=2\)
cho bieu thuc A=[x+2/x^2-x+x-2/x^2+x].x^2-1/x^2+2
a) tim dieu kien cua x de gia tri cua bieu thuc A duoc xac dinh
b) tinh gia tri cua bieu thuc A voi x = -200
a) \(A=\left[\dfrac{x+2}{x^2-x}+\dfrac{x-2}{x^2+x}\right].\dfrac{x^2-1}{x^2-x}\)
\(A=\left[\dfrac{x+2}{x\left(x-1\right)}+\dfrac{x-2}{x\left(x+1\right)}\right].\dfrac{x^2-1}{x^2+2}\)
\(A=\left[\dfrac{\left(x+2\right)\left(x+1\right)+\left(x-2\right)\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}\right].\dfrac{x^2-1}{x^2+2}\)
\(A=\left[\dfrac{x^2+2x+x+2+x^2-2x-x+2}{x\left(x-1\right)\left(x+1\right)}\right].\dfrac{x^2-1}{x^2+2}\)
\(A=\dfrac{2x^2+4}{x\left(x^2-1\right)}.\dfrac{x^2-1}{x^2+2}\)
\(A=\dfrac{2\left(x^2+2\right)\left(x^2-1\right)}{x\left(x^2-1\right)\left(x^2+2\right)}=\dfrac{2}{x}\)
b) Thay \(x=-200\) vào biểu thức \(A=\dfrac{2}{x}\) ta được :
\(A=\dfrac{2}{x}=\dfrac{2}{-200}=\dfrac{-2}{200}=\dfrac{-1}{100}\)
Tim GTNN cua bieu thuc
\(M=\frac{x^4+x^2+5}{x^4+2x^2+1}\)
Ta có: M = \(\frac{x^4+x^2+5}{x^4+2x^2+1}\)
M = \(\frac{\left(x^4+2x^2+1\right)-\left(x^2+1\right)+5}{\left(x^2+1\right)^2}\)
M = \(1-\frac{1}{x^2+1}+5\cdot\frac{1}{\left(x^2+1\right)^2}\)
Đặt \(\frac{1}{x^2+1}=y\)
Khi đó, ta có: M = \(1-y+5y^2=5\left(y^2-\frac{1}{5}y+\frac{1}{100}\right)+\frac{19}{20}=5\left(y-\frac{1}{10}\right)^2+\frac{19}{20}\ge\frac{19}{20}\forall y\)
Dấu "=" xảy ra <=> y - 1/10 = 0 <=> y = 1/10 <=> \(\frac{1}{x^2+1}=\frac{1}{10}\) <=> x2 + 1 = 10
<=> x2 = 9 <=> \(x=\pm3\)
Vậy MinM = 19/20 khi x = 3 hoặc x = -3
Dạng này bạn chỉ cần để ý: \(x^4+2x^2+1=\left(x^2+1\right)^2\) là bình phương của một biểu thức.
Rồi đặt \(x^2+1=y\Rightarrow x^2=y-1\) rồi thay vào M là được!
cho bieu thuc p=(x+1)(x+√x)/√x-x-√x, voi x>0
a/ rut gon bieu thuc
b/ tim gia tri cua x de gia tri cua bieu thuc p bang 2
1) Tim GTNN cua bieu thuc sau
a) M = x^2 + 4x + 9
b) N = x^2 - 20x +101
5) Tim GTLN cua bieu thuc sau
a) C = -y^2 + 6y -15
b) B = -x^2 + 9x - 12
c) D = 3x - x^2
Bài 1:
a: \(M=x^2+4x+4+5=\left(x+2\right)^2+5>=5\)
Dấu '=' xảy ra khi x=-2
b: \(N=x^2-20x+101=x^2-20x+100+1=\left(x-10\right)^2+1>=1\)
Dấu '=' xảy ra khi x=10
ap dung bdt co si tim gtnn cua bieu thuc y=x/3 +5/2x+1;x>1/2
Tim GTNN cua bieu thuc sau:
Q= \(\frac{-2\sqrt{3x}}{3+x}\) ( voi x≥0, x≠-3)
Đặt \(\sqrt{3x}=t\ge0\Rightarrow x=\frac{t^2}{3}\)
\(Q\left(t\right)=\frac{-2t}{3+\frac{t^2}{3}}=\frac{-6t}{t^2+9}\)
\(\Rightarrow Q'\left(t\right)=\frac{-6\left(t^2+9\right)+12t^2}{\left(t^2+9\right)^2}=\frac{6\left(t^2-9\right)}{\left(t^2+9\right)^2}\)
\(Q'\left(t\right)=0\Rightarrow t=3\)
\(Q\left(0\right)=0\) ; \(Q\left(3\right)=-1\)
Dựa vào BBT, ta thấy \(Q_{min}=-1\) khi \(t=3\Rightarrow x=3\)