chứng minh rằng 1/2^2+1/3^2+1/4^2+...+1/1990^2<3/4
Chứng Minh Rằng 1/2^2 + 1/3^2 + 1/4^2 +...+1/1990^2 < 3^4
chứng minh rằng 1/2 mũ 2 + 1/3 mũ 2+ 1/4 mũ 2+.....+ 1/1990 mũ 2 < 3/4
Lần sau bạn lưu ý gõ đề bằng bộ gõ công thức toán $(\sum)$ để được hỗ trợ tốt hơn.
Lời giải:
Ta có:
$\frac{1}{3^2}< \frac{1}{2.3}$
$\frac{1}{4^2}< \frac{1}{3.4}$
...........
$\frac{1}{1990^2}< \frac{1}{1989.1990}$
Cộng tất cả theo vế:
$\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{1989.1990}< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1989.1990}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{1989}-\frac{1}{1990}$
$=\frac{1}{2}-\frac{1}{1990}< \frac{1}{2}$
$\Rightarrow \frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{1990^2}< \frac{1}{2^2}+\frac{1}{2}=\frac{3}{4}$
Ta có đpcm.
Chứng minh rằng: 1/22+1/32+1/42+....+1/19902<3/4
Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{1990^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1989.1990}\)
Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1989.1990}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1989.1990}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1989}-\frac{1}{1990}\)
\(=1-\frac{1}{1990}=\frac{1989}{1990}\)
Vì \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{1990^2}< \frac{1989}{1990}< \frac{3}{4}\)nên \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}< \frac{3}{4}\)
Chứng minh rằng
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{1990^2}< \frac{3}{4}\)
1/ Chứng minh rằng:
1/ 22 + 1/32 + 1/42 + ... + 1/19902 < 3/4
2/ x,y,z > 0. Chứng minh rằng:
x+y=y+z=z+x
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Chứng minh rằng 1 - 1/2 + 1/3-.......-1/1990=1/996+......+1/1990
Bạn xem cách làm tại link này
https://lazi.vn/edu/exercise/chung-minh-rang-1-1-2-1-3-1-1990-1-996-1-997-1-990
Chứng minh rằng 1 - 1/2 + 1/3 - ... - 1/1990 = 1/996 + 1/997 + ... + 1/990 - Toán học Lớp 6 - Bài tập Toán học Lớp 6 - Giải bài tập Toán học Lớp 6 | Lazi.vn - Cộng đồng Tri thức & Giáo dục
1,Chứng minh rằng:
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{1990^2}< \dfrac{3}{4}\)
2,Chứng minh rằng:
\(1< \dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}< 2\)
2) Mình nghĩ nên nhỏ hơn 3 thì dễ tính hơn... @@
Ta có :
\(\dfrac{x}{x+y+z}< \dfrac{x}{x+y}< \dfrac{x}{x}\\ \dfrac{y}{x+y+z}< \dfrac{y}{y+z}< \dfrac{y}{y}\\ \dfrac{z}{x+y+z}< \dfrac{z}{z+x}< \dfrac{z}{z}\)
\(\Rightarrow\dfrac{x}{x+y+z}+\dfrac{y}{x+y+z}+\dfrac{z}{x+y+z}< \dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}< \dfrac{x}{x}+\dfrac{y}{y}+\dfrac{z}{z}\\ \Rightarrow\dfrac{x+y+z}{x+y+z}< \dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}< 1+1+1\\ \Rightarrow1< \dfrac{x}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{z+x}< 3\)
Chứng minh rằng : 1 - 1/2 + 1/3 - ... - 1990 = 1/996 + 1/997 +.....+ 1/1990.
Ta có: \(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{1899}-\dfrac{1}{1990}\)
\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{1899}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{1990}\right)\)
\(=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{1990}-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{1990}\right)\)
\(=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{1990}-\left(1+\dfrac{1}{2}+...+\dfrac{1}{995}\right)\)
\(=\dfrac{1}{996}+\dfrac{1}{997}+...+\dfrac{1}{1990}\)(ĐPCM)
Chứng minh rằng
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1990^2}\) < \(\frac{3}{4}\)