Ta có: \(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{1899}-\dfrac{1}{1990}\)
\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{1899}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{1990}\right)\)
\(=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{1990}-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{1990}\right)\)
\(=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{1990}-\left(1+\dfrac{1}{2}+...+\dfrac{1}{995}\right)\)
\(=\dfrac{1}{996}+\dfrac{1}{997}+...+\dfrac{1}{1990}\)(ĐPCM)