tìm m để có x thỏa mãn :\(Q=m\cdot x\sqrt{x}-2mx+1\)
Tìm m để thỏa mãn
\(\sqrt{x}-1=mx\sqrt{x}-2mx+1\)
Tìm m để hàm số y= f(x)= \(\left(\sqrt{m^2+4}-m\right)x^2-2mx+5\)thỏa mãn điều kiện f(0)= f(1)
1.Tìm m để bpt \(2\left|x-m\right|+x^2+2>2mx\) thỏa mãn với mọi x
2. Tìm m để bpt : \(x^2+2\left|x+m\right|+2mx+3m^2-3m+1< 0\) có nghiệm
1.
\(2\left|x-m\right|+x^2+2>2mx\)
\(\Leftrightarrow\left(x-m\right)^2+2\left|x-m\right|-m^2+2>0\)
\(\Leftrightarrow t^2+2t-m^2+2>0\left(t=\left|x-m\right|\ge0\right)\)
\(\Leftrightarrow m^2< f\left(t\right)=t^2+2t+2\)
Yêu cầu bài toán thỏa mãn khi \(m^2< minf\left(t\right)=2\)
\(\Leftrightarrow-\sqrt{2}< m< 2\)
Vậy \(-\sqrt{2}< m< 2\)
2.
\(x^2+2\left|x+m\right|+2mx+3m^2-3m+1< 0\)
\(\Leftrightarrow\left(x+m\right)^2+2\left|x+m\right|+2m^2-3m+1< 0\)
\(\Leftrightarrow\left(\left|x+m\right|+1\right)^2< -2m^2+3m\)
Ta có \(VT=\left(\left|x+m\right|+1\right)^2=\left(-\left|x+m\right|-1\right)^2\le\left(-1\right)^2=1\)
Yêu cầu bài toán thỏa mãn khi \(VP=-2m^2+3m>1\)
\(\Leftrightarrow2m^2-3m+1< 0\)
\(\Leftrightarrow\dfrac{1}{2}< m< 1\)
Cho phương trình x2-2mx+m+2=0. Tìm m để phương trình có hai nghiệm phân biệt thỏa mãn \(4\sqrt{x_1+4}+\sqrt{x_2}=13\)
a Tìm m để phương trình \(x^2-\left(2m+1\right)x+m^2+1=0\)
có hai nghiệm phân biệt trong đó nghiệm này
gấp đôi nghiệm kia
b Tìm m để phương trình \(x^2-2mx+m-3=0\) có hai nghiệm \(x_1,x_2\) thỏa mãn \(x_1+2x_2\) =1
c Tìm m để phương trình \(x^2-2mx+\left(m-1\right)^3=0\)
có hai nghiệm trong đó nghiệm này là bình
phương của nghiệm kia .
d Tìm m để phương trình \(2x^2-\left(m+1\right)x+m+3=0\) có hai nghiệm sao cho hiệu hai nghiệm bằng 1.
d: Ta có: \(\text{Δ}=\left(m+1\right)^2-4\cdot2\cdot\left(m+3\right)\)
\(=m^2+2m+1-8m-24\)
\(=m^2-6m-23\)
\(=m^2-6m+9-32\)
\(=\left(m-3\right)^2-32\)
Để phương trình có hai nghiệm phân biệt thì \(\left(m-3\right)^2>32\)
\(\Leftrightarrow\left[{}\begin{matrix}m-3>4\sqrt{2}\\m-3< -4\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>4\sqrt{2}+3\\m< -4\sqrt{2}+3\end{matrix}\right.\)
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1x_2=\dfrac{m+3}{2}\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1-x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1=\dfrac{m+3}{2}\\x_2=x_1-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+3}{4}\\x_2=\dfrac{m+3}{4}-\dfrac{4}{4}=\dfrac{m-1}{4}\end{matrix}\right.\)
Ta có: \(x_1x_2=\dfrac{m+3}{2}\)
\(\Leftrightarrow\dfrac{\left(m+3\right)\left(m-1\right)}{16}=\dfrac{m+3}{2}\)
\(\Leftrightarrow\left(m+3\right)\left(m-1\right)=8\left(m+3\right)\)
\(\Leftrightarrow\left(m+3\right)\left(m-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=9\end{matrix}\right.\)
Với điều kiện: \(x>0;x\ne4;x\ne1\): Cho \(P=\sqrt{x}-1\). Tìm m để có x thoả mãn \(P=mx\sqrt{x}-2mx+1\)
\(\sqrt{x}-1=mx\sqrt{x}-2mx+1\)
\(\Leftrightarrow mx\left(\sqrt{x}-2\right)-\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(mx-1\right)=0\)
\(\Leftrightarrow mx-1=0\) (do \(x\ne4\Rightarrow\sqrt{x}-2\ne0\))
Để có x thỏa mãn bài toán
\(\Rightarrow\left\{{}\begin{matrix}m\ne0\\\dfrac{1}{m}\ne1\\\dfrac{1}{m}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m\ne1\end{matrix}\right.\)
tìm m để phương trình x^2-2mx+m-1=0 có 2 nghiệm thỏa mãn x1<1<x2
(7) Cho pt: \(x^2-2mx+m^2-2=0\). Tìm m để pt có 2 nghiệm \(x_1,x_2\) thỏa mãn: \(\left|x_1^3-x^3_2\right|=10\sqrt{2}\)
giúp mk vs ạ mai mk hc rồi
Câu 1: Cho P=\(\frac{x-1}{\sqrt{x}}\) với \(x>0,x\ne1\) Tìm m để có x thỏa mãn \(P.\sqrt{x}=m-\sqrt{x}\)
Câu2: Cho P=\(\frac{\sqrt{x}-2}{\sqrt{x}+1}\) với \(x\ge0,x\ne4,x\ne9\) Tìm m để có x thỏa mãn \(P.\left(\sqrt{x}+1\right)=m\left(x+1\right)-2\)
Câu 3 Cho P=\(\frac{4x}{\sqrt{x}-3}\) với \(x\ge0,x\ne9\) Tìm m để có x>9 thỏa mãn \(m.\left(\sqrt{x}-3\right).P>x+1\)
Câu 4 cho P=\(1-\sqrt{x}\) với \(x>0,x\ne4\) Tìm m để có x thỏa mãn \(P.\left(\sqrt{x}+1\right)\ge\sqrt{x}+m\)
câu 2:\(\Leftrightarrow\frac{\sqrt{x}-2}{\sqrt{x}+1}.\left(\sqrt{x}+1\right)=m\left(x+1\right)-2\Leftrightarrow\sqrt{x}-2-mx-m+2=0\Leftrightarrow\sqrt{x}=m\left(x+1\right)\Leftrightarrow m=\frac{\sqrt{x}}{x+1}\)
vì x>=0 =>x+1>0 \(\sqrt{x}\ge0\)=> m phải >=0
\(x\ne4\Rightarrow x+1\ne5;\sqrt{x}\ne2\Rightarrow m\ne\frac{2}{5}\)
\(x\ne9\Rightarrow x+1\ne10;\sqrt{x}\ne3\Rightarrow m\ne\frac{3}{10}\)