Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Dương Thùy Linh
Xem chi tiết
Phan Văn Hiếu
18 tháng 7 2016 lúc 16:55

ban su dung hang dang thuc la ra

Nguyễn Thiều Công Thành
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
๖ۣۜRᶤℵ﹏❖(๖ۣۜBảo)
22 tháng 12 2019 lúc 22:28

 Châu ơi!đăng làm j z

Khách vãng lai đã xóa
Forever alone
Xem chi tiết
Phạm Tiến
13 tháng 9 2017 lúc 14:48

a) \(\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)\)

=\(a^3+b^3+\left(a^3-b^3\right)\)

=\(a^3+b^3+a^3-b^3\)

=\(2a^3\)

b) \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

=\(\left(a+b\right)\left(a^2-2ab+b^2-ab\right)\)

=\(\left(a+b\right)\left[\left(a^2-2ab+b^2\right)-ab\right]\)

=\(\left(a+b\right)\left[\left(a-b\right)^2-ab\right]\)

Trần Thiên Kim
13 tháng 9 2017 lúc 14:52

a. \(\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)=a^3+b^3+a^3-b^3=2a^3\)

b. \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)

Sách Giáo Khoa
Xem chi tiết
T.Thùy Ninh
6 tháng 6 2017 lúc 11:01

\(a,\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)\)\(=\left(a^3+b^3\right)+\left(a^3-b^3\right)=2a^3\Rightarrowđpcm\)

\(b,\left(a+b\right)\left[\left(a-b\right)^2+ab\right]=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)=\left(a+b\right)\left(a^2-ab+b^2\right)\)\(=\left(a^3+b^3\right)\Rightarrowđpcm\)

\(c,\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+a^2d^2+b^2c^2+b^2d^2=\left(a^2c^2+2abcd+b^2d^2\right)+\left(a^2d^2-2abcd+b^2c^2\right)\)\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2\Rightarrowđpcm\)

Mai Phạm Phương
18 tháng 8 2017 lúc 18:11

a) (a+b)(a2-ab+b2)+(a-b)(a2+ab+b2)

= a3+b3+a3-b3 = 2a3

b) a3+b3

= (a+b)(a2-ab+b2)

= (a+b)(a2- 2ab+b2)+ab

= (a+b)(a2-b2)+ab

obito
12 tháng 10 2017 lúc 21:54

a. Biến đổi vế trái:

(a+b)(a2−ab+b2)+(a−b)(a2+ab+b2)=a3+b3+a3−b3=2a3

=>VT bằng VP (đpcm)

b. Biến đổi vế phải:

(a+b)[(a−b)2+ab]=(a+b)[a2−2ab+b2+ab]

=(a+b)(a2−ab+b2)=a3+b3

=>VP bằng VT (đpcm)

c. Biến đổi vế phải:

(ac+bd)2+(ad−bc)2=a2c2+2abcd+b2d2+a2d2−2abcd+b2c2

=a2c2+b2d2+a2d2+b2c2=c(a2+b2)+d2(a2+b2)=(a2+b2)(c2+d2)

=>VP bằng VT (đpcm)


yl
Xem chi tiết
Trần Thùy Dương
26 tháng 6 2018 lúc 23:00

b)  \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Biến đổi VT ta có :

+) \(a^3+b^3+c^3=ab+bc+ca\)

\(\Leftrightarrow3a^3+3b^3+3c^3=3ab+3bc+3ca\)

\(\Rightarrow\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=0\)

\(\Rightarrow a=b=c\)

< => VT = VP 

=> đpcm

Dương Lam Hàng
26 tháng 6 2018 lúc 16:13

\(VP=\left(a+b\right)^3-3ab\left(a+b\right)=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2\)

                                                              \(=a^3+b^3=VT\)

Nguyễn Thùy Duyên
Xem chi tiết
T.Ps
31 tháng 7 2019 lúc 15:37

#)Giải :

a)\(ab\left(b-a\right)+bc\left(b-c\right)+ca\left(c-a\right)\)

\(=a\left(a-b\right)+b^2c-bc^2+ac^2-a^2c\)

\(=ab\left(a-b\right)-\left(a-b\right)\left(a+b\right)c+c^2\left(a-b\right)\)

\(=\left(ab-ac-bc+c^2\right)\left(a-b\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)

b) \(a^2\left(b-c\right)-b^2\left(c-a\right)+c^2\left(a-b\right)\)

\(=a^2\left(b-c\right)-b^2\left[\left(b-c\right)+\left(a-b\right)\right]+c^2\left(a-b\right)\)

\(=a^2\left(b-c\right)-b^2\left(b-c\right)-b^2\left(a-b\right)+c^2\left(a-b\right)\)

\(=\left(a^2-b^2\right)\left(b-c\right)-\left(b^2-c^2\right)\left(a-b\right)\)

\(=\left(a-b\right)\left(a+b\right)\left(b-c\right)-\left(b-c\right)\left(b+c\right)\left(a-b\right)\)

\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)

YA Mike
Xem chi tiết
Mỹ Duyên
25 tháng 5 2017 lúc 21:34

Sai đề chăng?

Hoài Thu Vũ
Xem chi tiết
Võ Việt Hoàng
24 tháng 7 2023 lúc 16:14

Đặt \(\left\{{}\begin{matrix}a^2-bc=x\\b^2-ca=y\\c^2-ab=z\end{matrix}\right.\)

\(\Rightarrow x+y+z\ge0\)

\(\)Đẳng thức cần c/m trở thành: \(x^3+y^3+z^3\ge3xyz\left(1\right)\)

Áp dụng Bất đẳng thức AM-GM cho 3 số x,y,z, ta có:

\(x^3+y^3+z^3\ge3\sqrt[3]{x^3.y^3.z^3}=3xyz\)

=> Đẳng thức (1) luôn đúng với mọi x

Dấu = xảy ra khi: x=y=z hay \(a^2-bc=b^2-ca=c^2-ab\)

và \(a^2+b^2+c^2-\left(ab+bc+ca\right)=0\)\(\Rightarrow a=b=c\)