Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Forever alone

Chứng minh rằng:

a) \(\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)=2a^3\)

b) \(a^3+b^3=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)

Phạm Tiến
13 tháng 9 2017 lúc 14:48

a) \(\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)\)

=\(a^3+b^3+\left(a^3-b^3\right)\)

=\(a^3+b^3+a^3-b^3\)

=\(2a^3\)

b) \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

=\(\left(a+b\right)\left(a^2-2ab+b^2-ab\right)\)

=\(\left(a+b\right)\left[\left(a^2-2ab+b^2\right)-ab\right]\)

=\(\left(a+b\right)\left[\left(a-b\right)^2-ab\right]\)

Trần Thiên Kim
13 tháng 9 2017 lúc 14:52

a. \(\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)=a^3+b^3+a^3-b^3=2a^3\)

b. \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)


Các câu hỏi tương tự
Lê Thu Trang
Xem chi tiết
Phan Hà Thanh
Xem chi tiết
Suzanna Dezaki
Xem chi tiết
Chuột yêu Gạo
Xem chi tiết
 Mashiro Shiina
Xem chi tiết
Phan Hà Thanh
Xem chi tiết
Nam Phạm An
Xem chi tiết
I ♥ Jungkook
Xem chi tiết
Thục Trinh
Xem chi tiết