Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Tuệ Khanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 10 2021 lúc 22:07

\(C=\dfrac{10}{7\cdot12}+\dfrac{10}{12\cdot17}+...+\dfrac{10}{502\cdot507}\)

\(=2\left(\dfrac{1}{7}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{17}+...+\dfrac{1}{502}-\dfrac{1}{507}\right)\)

\(=2\cdot\dfrac{500}{3549}=\dfrac{1000}{3549}\)

Celina
Xem chi tiết
Pham Van Hung
9 tháng 7 2018 lúc 15:02

a,A=1/5-1/8+1/8-1/11+...+1/2006-1/2009=1/5-1/2009=2004/10045

b,B=1/4x(4/6x10+4/10x14+...+4/402x406)

=1/4x(1/6-1/10+1/10-1/14+...+1/402-1/406)

=1/4x(1/6-1/406)

=1/4x100/609=25/609

c,C=2x(5/7x12+5/12x17+...+5/502x507)

=2x(1/7-1/12+1/12-1/17+...+1/502-1/507)

=2x(1/7-1/507)

=2x500/3549

=1000/3549

Xin lỗi vì ko viết được rõ ràng.Mong bạn thông cảm. Chúc bạn học tốt.

  

nguyen thi bao tien
9 tháng 7 2018 lúc 15:04

\(\frac{3}{5\times8}+\frac{3}{8\times11}+...+\frac{3}{2006\times2009}\)

\(=\frac{1}{3}\left(\frac{3}{5\times8}+\frac{3}{8\times11}+...+\frac{3}{2006\times2009}\right)\)

\(=\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{2006}-\frac{1}{2009}\right)\)

\(=\frac{1}{3}\left(\frac{1}{5}-\frac{1}{2009}\right)\)

\(=\frac{1}{3}\left(\frac{1}{5}-\frac{1}{2009}\right)\)

\(=\frac{1}{3}\left(\frac{2009}{10045}-\frac{5}{10045}\right)\)

\(=\frac{1}{3}.\frac{2004}{10045}=\frac{2004}{30135}\)

Mary Stephanie
Xem chi tiết
Akai Haruma
9 tháng 7 2018 lúc 14:46

a)

\(A=\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{2006.2009}\)

\(=\frac{8-5}{5.8}+\frac{11-8}{8.11}+\frac{14-11}{11.14}+....+\frac{2009-2006}{2006.2009}\)

\(=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{2006}-\frac{1}{2009}\)

\(=\frac{1}{5}-\frac{1}{2009}=\frac{2004}{10045}\)

Akai Haruma
9 tháng 7 2018 lúc 14:48

b)

\(B=\frac{1}{6.10}+\frac{1}{10.14}+...+\frac{1}{402.406}\)

\(\Rightarrow 4B=\frac{4}{6.10}+\frac{4}{10.14}+...+\frac{4}{402.406}\)

\(4B=\frac{10-6}{6.10}+\frac{14-10}{10.14}+...+\frac{406-402}{402.406}\)

\(4B=\frac{1}{6}-\frac{1}{10}+\frac{1}{10}-\frac{1}{14}+...+\frac{1}{402}-\frac{1}{406}\)

\(4B=\frac{1}{6}-\frac{1}{406}=\frac{100}{609}\Rightarrow B=\frac{25}{609}\)

Akai Haruma
9 tháng 7 2018 lúc 14:51

c)

\(C=\frac{10}{7,12}+\frac{10}{12.17}+...+\frac{10}{502.507}\)

\(\Rightarrow \frac{C}{2}=\frac{5}{7.12}+\frac{5}{12.17}+...+\frac{5}{502.507}\)

\(\frac{C}{2}=\frac{12-7}{7.12}+\frac{17-12}{12.17}+...+\frac{507-502}{502.507}\)

\(\frac{C}{2}=\frac{1}{7}-\frac{1}{12}+\frac{1}{12}-\frac{1}{17}+....+\frac{1}{502}-\frac{1}{507}\)

\(\frac{C}{2}=\frac{1}{7}-\frac{1}{507}=\frac{500}{3549}\)

\(\Rightarrow C=\frac{1000}{3549}\)

Thuỳ Dương
Xem chi tiết
Thuỳ Dương
30 tháng 7 2021 lúc 18:43

Giúp với 

Edogawa Conan
30 tháng 7 2021 lúc 18:46

Ta có:\(\dfrac{20}{2\times7}+\dfrac{20}{7\times12}+\dfrac{20}{12\times17}+\dfrac{20}{17\times22}+\dfrac{20}{22\times27}+\dfrac{20}{27\times32}\)

 \(=4\times\left(\dfrac{5}{2\times7}+\dfrac{5}{7\times12}+\dfrac{5}{12\times17}+\dfrac{5}{17\times22}+\dfrac{5}{22\times27}+\dfrac{5}{27\times32}\right)\)

    \(=4\times\left(\dfrac{1}{2}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{22}+\dfrac{1}{22}-\dfrac{1}{27}+\dfrac{1}{27}-\dfrac{1}{32}\right)\)

\(=4\times\left(\dfrac{1}{2}-\dfrac{1}{32}\right)=4\times\dfrac{15}{32}=\dfrac{30}{16}\)

Nguyễn Hải Đăng ( ɻɛɑm ʙ...
30 tháng 7 2021 lúc 20:25

\(\dfrac{20}{2\cdot7}+\dfrac{20}{7\cdot12}+\dfrac{20}{12\cdot17}+\dfrac{20}{17\cdot22}+\dfrac{20}{22\cdot27}+\dfrac{20}{27\cdot32}\) ( * là nhân nha )

20 x ( \(\dfrac{1}{2\cdot7}+\dfrac{1}{7\cdot12}+\dfrac{1}{12\cdot17}+\dfrac{1}{17\cdot22}+\dfrac{1}{22\cdot27}+\dfrac{1}{27\cdot32}\) )

20 x ( \(\dfrac{1}{2}+\dfrac{1}{7}-\dfrac{1}{7}+\dfrac{1}{12}-\dfrac{1}{12}+\dfrac{1}{17}-\dfrac{1}{17}+\dfrac{1}{22}-\dfrac{1}{22}+\dfrac{1}{27}-\dfrac{1}{27}+\dfrac{1}{32}\) )

20 x ( \(\dfrac{1}{2}-\dfrac{1}{32}\) ) 

20 x \(\dfrac{15}{32}\) = \(\dfrac{300}{32}=\dfrac{75}{8}\)

phạm an
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 5 2022 lúc 22:19

\(A=\dfrac{10}{3\cdot7}-\dfrac{1}{7}+\dfrac{1}{12}-\dfrac{1}{12}+\dfrac{1}{19}-\dfrac{1}{19}+\dfrac{1}{24}=\dfrac{10}{21}+\dfrac{1}{24}=\dfrac{29}{56}\)

Đỗ Tuệ Lâm
24 tháng 5 2022 lúc 22:19

bn nên gõ latex để mn dễ hỗ trợ trl nha

No Pro
24 tháng 5 2022 lúc 22:19

\(\dfrac{3}{8}\) 

Mai Hong Ngoc
Xem chi tiết
minato
18 tháng 3 2016 lúc 20:01

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

trịnh phương thảo
18 tháng 3 2016 lúc 20:06

trả lời cẩn thận đi minato

Mai Hong Ngoc
23 tháng 3 2016 lúc 11:34

thế các bạn có trả lời đàng hoàng giùm mình ko

Thiên Thần Bảo Bình
Xem chi tiết
Thiên Thần Bảo Bình
16 tháng 7 2017 lúc 15:56

dua thoi gap gap lam mình can so sánh kẹt qua

Huy Hoàng
16 tháng 7 2017 lúc 16:10

\(\frac{6}{7.12}+\frac{6}{12.17}+...+\frac{6}{87.92}+\frac{6}{92.95}\)

\(6\left(\frac{5}{7.12}.\frac{1}{5}+\frac{5}{12.17}.\frac{1}{5}+...+\frac{5}{92.95}.\frac{1}{5}\right)\)

\(6.\frac{1}{5}\left(\frac{5}{7.12}+\frac{5}{12.17}+...+\frac{5}{87.92}+\frac{5}{92.95}\right)\)

\(\frac{6}{5}\left(\frac{5}{7}-\frac{5}{12}+\frac{5}{12}-\frac{5}{17}+...+\frac{5}{92}-\frac{5}{95}\right)\)

\(\frac{6}{5}\left(\frac{5}{7}-\frac{5}{95}\right)\)\(\frac{6}{5}.\frac{88}{133}=\frac{528}{665}\)

Tự rút gọn, mình lười.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 8 2018 lúc 3:13

Chọn đáp án D

Nguyễn Mai Phương
Xem chi tiết
Nguyễn thành Đạt
26 tháng 6 2023 lúc 20:24

Em cần phần nào nhỉ .

A = \(\dfrac{5}{1.6}\)+\(\dfrac{5}{6.11}\)+\(\dfrac{5}{11.16}\)+\(\dfrac{5}{16.21}\)+...+\(\dfrac{5}{101.106}\)

A = \(\dfrac{1}{1}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{101}-\dfrac{1}{106}\)

A = \(\dfrac{1}{1}\) - \(\dfrac{1}{106}\)

A = \(\dfrac{105}{106}\)

B = \(\dfrac{3}{1.4}\) +\(\dfrac{3}{4.7}\)+\(\dfrac{3}{7.10}\)+...+\(\dfrac{3}{97.100}\)

B = \(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\)

B = \(\dfrac{1}{1}\) - \(\dfrac{1}{100}\)

B = \(\dfrac{99}{100}\)

C = \(\dfrac{1}{2.7}+\dfrac{1}{7.12}\) + \(\dfrac{1}{12.17}\)+...+ \(\dfrac{1}{97.102}\)

C= \(\dfrac{1}{5}\) \(\times\)\(\dfrac{5}{2.7}+\dfrac{5}{7.12}+\dfrac{5}{12.17}+...+\dfrac{5}{97.102}\))

C = \(\dfrac{1}{5}\)\(\times\)(\(\dfrac{1}{2}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{12}\) + \(\dfrac{1}{12}\) - \(\dfrac{1}{17}\)+...+ \(\dfrac{1}{97}\) - \(\dfrac{1}{102}\))

C = \(\dfrac{1}{5}\) \(\times\)\(\dfrac{1}{2}\) - \(\dfrac{1}{102}\))

C = \(\dfrac{1}{5}\) \(\times\) \(\dfrac{25}{51}\)

C = \(\dfrac{5}{51}\) 

D = \(\dfrac{1}{2}\) +   \(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{42}\) + \(\dfrac{1}{56}\) + \(\dfrac{1}{72}\)

D = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + \(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\)+\(\dfrac{1}{7.8}\)\(\dfrac{1}{8.9}\)

D = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)+\(\dfrac{1}{6}\) - \(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-\(\dfrac{1}{8}\)+\(\dfrac{1}{8}\)-\(\dfrac{1}{9}\)

D = \(\dfrac{1}{1}\) - \(\dfrac{1}{9}\)

D = \(\dfrac{8}{9}\)

E = \(\dfrac{3}{2.4}\)+\(\dfrac{3}{4.6}\)+\(\dfrac{3}{6.8}\)+...+\(\dfrac{3}{98.100}\)

E = \(\dfrac{3}{2}\) \(\times\) ( \(\dfrac{2}{2.4}\) + \(\dfrac{2}{4.6}\)\(\dfrac{2}{6.8}\)+...+\(\dfrac{2}{98.100}\))

E = \(\dfrac{3}{2}\)\(\times\)\(\dfrac{1}{2}\) - \(\dfrac{1}{4}\)\(\dfrac{1}{4}\) - \(\dfrac{1}{6}\)+\(\dfrac{1}{6}\)-\(\dfrac{1}{8}\)+...+\(\dfrac{1}{98}\) - \(\dfrac{1}{100}\))

E = \(\dfrac{3}{2}\) \(\times\) ( \(\dfrac{1}{2}\) - \(\dfrac{1}{100}\))

E = \(\dfrac{3}{2}\) \(\times\) \(\dfrac{49}{100}\)

E = \(\dfrac{147}{200}\)