phan tich da thuc thanh nhan tu
1) X3+ 6x2 + 12xy + 8
2) x4- 4x3- 8x2 + 8x
3) x4+ 2x3 + x2- y2
giup minh nhe cam on
phan tich da thuc sau thanh nhan tu
x^3+2x^2+x+2
giup minh nhe cam on nhieu
Ta có:
\(x^3+2x^2+x+2\)
\(=x^2\left(x+2\right)+\left(x+2\right)\)
\(=\left(x^2+1\right)\left(x+2\right)\)
phan tich da thuc sau thanh nhan tu
x^3+3x^2+4x+2
6x^4-x^3-7x^2+x+1
giup minh nhe cam on nhieu
\(a.x^3+3x^2+4x+2\)
\(=x^3+x^2+2x^2+2x+2\)
\(=x^2\left(x+1\right)+2x\left(x+1\right)+2\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+2x+2\right)\)
\(b.6x^4-x^3-7x^2+x+1\)
\(=6x^4-6x^3+5x^3-5x^2-2x^2+2x-x+1\)
\(=6x^3\left(x-1\right)+5x^2\left(x-1\right)-2x\left(x-1\right)-\left(x-1\right)\)
\(=\left(x-1\right)\left(6x^3+5x^2-2x-1\right)\)
\(=\left(x-1\right)\left(6x^3+6x^2-x^2-x-x-1\right)\)
\(=\left(x-1\right)\left[6x^2\left(x+1\right)-x\left(x+1\right)-\left(x+1\right)\right]\)
\(=\left(x-1\right)\left(x+1\right)\left(6x^2-x-1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(6x^2-3x+2x-1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left[3x\left(2x-1\right)+\left(2x-1\right)\right]\)
\(=\left(x-1\right)\left(x+1\right)\left(2x-1\right)\left(3x+1\right)\)
k giùm cái cho đỡ buồn!
Phân tích
a,(x2 + x + 2)3 - (x+1)3 = x6 +1 b,(x2 + 10x + 8)2 - (8x + 4)(x2 + 8x+7)
c, A= x4 + 2x3 + 3x2 + 2x+4 d,B= x4 + 4x3 + +8x2 + 8x + 4
e, C= x4 - 2x3 + 5x2 - 4x + 4
6x2-5x-3xy+10x
phan tich da thuc thanh nhan tu
\(=6x^2+5x-3xy\)
\(=x\left(6x+5-3y\right)\)
giải phương trình:
a, x4-x2-2=0
b, x4+2x3+x2=0
c,x3-1= 0
d, 6x2-7x+2=0
a, \(x^4-x^2-2=0\Leftrightarrow x^4-2x^2+x^2-2=0\)
\(\Leftrightarrow x^2\left(x^2-2\right)+\left(x^2-2\right)=0\Leftrightarrow\left(x^2+1>0\right)\left(x^2-2\right)=0\Leftrightarrow x=\pm\sqrt{2}\)
b, \(\Leftrightarrow x^2\left(x^2+2x+1\right)=0\Leftrightarrow x^2\left(x+1\right)^2=0\Leftrightarrow x=0;x=-1\)
c, \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1>0\right)=0\Leftrightarrow x=1\)
d, \(\Leftrightarrow6x^2-3x-4x+2=0\Leftrightarrow\left(3x-2\right)\left(2x-1\right)=0\Leftrightarrow x=\dfrac{2}{3};x=\dfrac{1}{2}\)
a)
/ \(x^4+x^2-2=0\)
\(\Leftrightarrow\left(x^2\right)^2-x^2+2x^2-2=0\\ \Leftrightarrow x^2\left(x^2-1\right)+2\left(x^2-1\right)=0\\ \Leftrightarrow\left(x^2+2\right)\left(x^2-1\right)=0\\ \Leftrightarrow\left(x^2+2\right)\left(x-1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+2=0\\x+1=0\\x-1-0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
3.7: Su dung cac hang dang thuc de phan tich cac da thuc sau thanh nhan tu:
a) -y2 + 1/9
b) x4 - 256
c) 9 (x - 3)2 - 4 (x + 1)2
d) 25x2 - 1/81 x2y2
a) \(-y^2+\dfrac{1}{9}\)
\(=-\left(y^2-\left(\dfrac{1}{3}\right)^2\right)\)
\(=-\left(y+\dfrac{1}{3}\right)\left(y-\dfrac{1}{3}\right)\)
b) \(4^4-256\)
\(=4^4-4^4\)
\(=0\)
c) \(9\left(x-3\right)^2-4\left(x+1\right)^2\)
\(=\left(3x-9\right)^2-\left(2x+2\right)^2\)
\(=\left(3x-9+2x+2\right)\left(3x-9-2x-2\right)\)
\(=\left(5x-7\right)\left(x-11\right)\)
\(a,=\left(\dfrac{1}{3}-y\right)\left(\dfrac{1}{3}+y\right)\\ b,=\left(x^2-16\right)\left(x^2+16\right)\\ =\left(x-4\right)\left(x+4\right)\left(x^2+16\right)\\ c,=\left[3\left(x-3\right)-2\left(x+1\right)\right]\left[3\left(x-3\right)+2\left(x+1\right)\right]\\ =\left(3x-9-2x-2\right)\left(3x-9+2x+2\right)\\ =\left(x-11\right)\left(5x-7\right)\\ d,=\left(5x-\dfrac{1}{9}xy\right)\left(5x+\dfrac{1}{9}xy\right)=x^2\left(5-\dfrac{1}{9}y\right)\left(5+\dfrac{1}{9}y\right)\)
cau 1 :phan tich da thuc thanh nhan tu a)5x3y-10x2y2+5xy3 b)x3 2y-1-125 2y-1 c)x2-6x-4y2+9 d)x2-xy+2y-2x e)4x2-4y2+4x+1 minh can gap
Phan tich da thuc thanh nhan tu : x2 - 4x -y2+4
\(x^2-4x+4-y^2\)
\(=\left(x-2\right)^2-y^2\)
\(=\left(x-2-y\right)\left(x-2+y\right)\)
\(x^2-4x-y^2+4=\left(x-2\right)^2-y^2=\left(x-y-2\right)\left(x+y-2\right)\)
Phan tich da thuc thanh nhan tu : x2 - 4x -y2+4
\(x^2-4x+4-y^2\)
\(=\left(x-2\right)^2-y^2\)
\(=\left(x-2-y\right)\left(x-2+y\right)\)
\(=\left(x-2\right)^2-y^2=\left(x-y-2\right)\left(x+y-2\right)\)