Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Giang
Xem chi tiết
Lấp La Lấp Lánh
26 tháng 8 2021 lúc 22:14

\(S=1-2+2^2-2^3+...+2^{2012}-2^{2013}\)

\(\Rightarrow2S=2-2^2+2^3-2^4+...+2^{2013}-2^{2014}\)

\(\Rightarrow2S+S=2-2^2+2^3-...-2^{2014}+1-2^2-2^3+...-2^{2013}\)

\(\Rightarrow3S=1-2^{2014}\)\(\Rightarrow3S-2^{2014}=1-2^{2015}\)

Lê Nhật Minh
Xem chi tiết
I don
12 tháng 5 2022 lúc 11:24

Đặt N = 1 + 2 + 22 +...+ 22012

2N = 2 + 22 + 23 +...+ 22013

2N - N = (2 + 22 + 23+....+ 22013) - (1 + 2 + 22 +....+ 22012)

N = 22013 - 1

Thay N vào M ta được:

\(M=\dfrac{2^{2013}-1}{2^{2014}-2}=\dfrac{2^{2013}-1}{2\left(2^{2013}-1\right)}=\dfrac{1}{2}\)
Bé Cáo
12 tháng 5 2022 lúc 11:31

Đặt \(N=1+2+2^2+...+2^{2012}\)

\(2N=2+2^2+2^3+...+2^{2013}\)

\(2N-N=\left(2+2^2+2^3+...+2^{2013}\right)-\left(1+2+2^2+...+2^{2012}\right)\)

\(N=2^{2013}-1\)

Thay N vào M ta được:

\(M=\dfrac{2^{2013-1}}{2^{2014}-2}=\dfrac{2^{2013}-1}{2\left(2^{2013}-1\right)}=\dfrac{1}{2}\)

Huỳnh Kim Ngân
12 tháng 5 2022 lúc 11:22

Tham khảo link: https://olm.vn/hoi-dap/detail/80564627052.html

Lê Nhật Minh
Xem chi tiết
Đinh Thị Hà Linh
Xem chi tiết

Đặt \(A=2^{2013}+2^{2012}+\cdots+2^3+2^2+3\)

=>\(A=2^{2013}+2^{2012}+\cdots+2^2+2+1\)

=>\(2A=2^{2014}+2^{2013}+\cdots+2^3+2^2+2\)

=>\(2A-A=2^{2014}+2^{2013}+\cdots+2^3+2^2+2-2^{2013}-2^{2012}-\cdots-2^2-2-1\)

=>\(A=2^{2014}-1\)

Ta có: \(B=2^{2014}-2^{2013}-2^{2012}-\cdots-2^3-2^2-3\)

=>\(B=2^{2014}-\left(2^{2014}-1\right)\)

\(=2^{2014}-2^{2014}+1=1\)

Hữu Phúc Phạm
Xem chi tiết
Nguyễn Thị Thương Hoài
15 tháng 11 2023 lúc 20:22

    G = 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210

2.G = 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210 + 211

2G - G = (22 + 23 + 24 + 25 + 26 + 27 + 28 + 2+ 210 + 211) - (21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210)

G = 22 + 23 + 24 +25 + 26 + 27 + 28 + 29 + 210 + 211 - 21 -22 -23 -24 - 25 - 26 - 27 - 28 - 29 - 210

G = (22 -22) +(23 - 23) + (24 - 24) + (25 -25) + (26 - 26) +(27 - 27) +(28 -28) + (29 - 29) + (210 - 210) + (211 - 21)

G = 211 - 2

G = 2048 - 2 (đpcm)

Nguyễn Thị Thương Hoài
15 tháng 11 2023 lúc 20:25

b, 

G = 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210

D = 2.(1+ 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29)

Vì 2 ⋮ 2 nên D = 2.(1+2+22+23+24+25+26+27+28+29)⋮2 (đpcm)

Nguyễn Thị Thương Hoài
15 tháng 11 2023 lúc 20:29

G = 21 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210

G = (21 +22) +(23 +24)+(25+26) +(27+28) +(29+210)

G = 2.(1+2) + 23.(1 + 2) +25.(1+2) +27.(1+2) +29.(1+2)

G = 2.3 + 23.3 + 25.3 + 27.3 + 29.3

G = 3.(2 + 23 + 25 + 27 + 29)

Vì 3⋮ 3 nên G = 3.(2 +25 + 27+29) ⋮ 3 (đpcm)

 

Cao Trà Mi
Xem chi tiết
Nguyễn Trúc Minh
Xem chi tiết
Hoàng Quốc Bảo
Xem chi tiết
Nguyễn Thanh Huyền
24 tháng 1 2017 lúc 21:43

Tổng 6 chữ số cuối cùng của A là 0

đúng 100%

tk mk nha bạn

cẩm ơn

chúc bạn học tốt

Hoàng Quốc Bảo
24 tháng 1 2017 lúc 22:03

Bạn ơi giải luôn được ko

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 3 2018 lúc 3:33

Ta có:

A = 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210

= (2 + 22) + (23 + 24) + (25 + 26) + (27 + 28) + (29 + 210)

= 2 . (1 + 2) + 23 . (1 + 2) + 25 . (1 + 2) + 27 . (1 + 2) + 29 . (1 + 2)

= 2 . 3 + 23 . 3 + 25 . 3 + 27 . 3 + 29 . 3

= 3 . (2 + 23 + 25 + 27 + 29)

Vậy A ⋮ 3

Bùi Thu Trang
Xem chi tiết
Akai Haruma
31 tháng 12 2023 lúc 14:07

1/

Tổng A là tổng các số hạng cách đều nhau 4 đơn vị.

Số số hạng: $(101-1):4+1=26$

$A=(101+1)\times 26:2=1326$

Akai Haruma
31 tháng 12 2023 lúc 14:09

2/

$B=(1+2+2^2)+(2^3+2^4+2^5)+(2^6+2^7+2^8)+(2^9+2^{10}+2^{11})$

$=(1+2+2^2)+2^3(1+2+2^2)+2^6(1+2+2^2)+2^9(1+2+2^2)$

$=(1+2+2^2)(1+2^3+2^6+2^9)$

$=7(1+2^3+2^6+2^9)\vdots 7$

Akai Haruma
31 tháng 12 2023 lúc 14:09

3/
$C=1+2+2^2+2^3+...+2^{99}$

$2C=2+2^2+2^3+2^4+...+2^{100}$

$\Rightarrow 2C-C=2^{100}-1$

$\Rightarrow C=2^{100}-1$