Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
30 tháng 9 2023 lúc 23:38

Để hàm số \(y = \frac{1}{{\sqrt {x - 2} }}\) xác định \( \Leftrightarrow \,\,x - 2 > 0\,\, \Leftrightarrow \,\,x > 2.\)

Vậy tập xác định của hàm số là: \(D = \left( {2; + \infty } \right).\)

Chọn B.

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 8 2023 lúc 12:21

Điều kiện xác định: \(x^2-2x+1>0\)

Mà \(x^2-2x+1=\left(x-1\right)^2\ge0\forall x\in R\)

\(\Rightarrow x-1\ne0\\ \Leftrightarrow x\ne1\)

Vậy D = \(R/\left\{1\right\}\) ⇒ Chọn B.

Nguyễn Lê Phước Thịnh
13 tháng 8 2023 lúc 22:26

ĐKXĐ: x^2-2x+1>0

=>(x-1)^2>0

=>x-1<>0

=>x<>1

=>Chọn B

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 23:15

Hàm số xác định khi: \(\sin x - 1\; \ne 0\; \Leftrightarrow \sin x \ne 1\; \Leftrightarrow x \ne \frac{\pi }{2} + k2\pi ,\;\;k \in \mathbb{Z}\)

Vậy ta chọn đáp án B

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
23 tháng 9 2023 lúc 11:22

a) Ta thấy hàm số có nghĩa với mọi số thực nên \(D = \mathbb{R}\)

b)

Điều kiện: \(2 - 3x \ge 0 \Leftrightarrow x \le \frac{2}{3}\)

Vậy tập xác định: \(S = \left( { - \infty ;\frac{2}{3}} \right]\)

c) Điều kiện: \(x + 1 \ne 0 \Leftrightarrow x \ne  - 1\)

Tập xác định: \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\)

d) Ta thấy hàm số có nghĩa với mọi \(x \in \mathbb{Q}\) và \(x \in \mathbb{R}\backslash \mathbb{Q}\) nên tập xác định: \(D = \mathbb{R}\).

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
21 tháng 9 2023 lúc 15:24

a)     Đồ thị hàm số trên mỗi đoạn là như nhau

b)     \(f\left( {{x_0} + T} \right) = f\left( {{x_0} - T} \right) = f\left( {{x_0}} \right)\)

Tiểu Thang Viên (bánh tr...
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 21:21

a) Ta có \(f\left( {{x_0}} \right) = {x_0} + 1;\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \left( {x + 1} \right) = \mathop {\lim }\limits_{x \to {x_0}} x + 1 = {x_0} + 1\)

\( \Rightarrow \mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\)

Vậy hàm số \(f\left( x \right)\) liên tục tại \({x_0}.\)

b) Dựa vào đồ thị hàm số ta thấy: Đồ thị hàm số là một đường thẳng liền mạch với mọi giá trị \(x \in \mathbb{R}.\)

Trần Thanh
Xem chi tiết
Đỗ Đức Hà
21 tháng 12 2021 lúc 22:18

B

Akai Haruma
21 tháng 12 2021 lúc 22:32

Lời giải:
ĐKXĐ: $3^x-9\neq 0\Lefrightarrow 3^x\neq 9\Leftrightarrow x\neq 2$

Đáp án B. 

phung tuan anh phung tua...
22 tháng 12 2021 lúc 8:02

B

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 12:16

Trên các khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {0; + \infty } \right)\), \(f\left( x \right) = \frac{{{x^2} - 2x}}{x}\) là hàm phân thức hữu tỉ nên liên tục trên từng khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {0; + \infty } \right)\).

Ta có: \(f\left( 0 \right) = a\)

\(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \frac{{{x^2} - 2x}}{x} = \mathop {\lim }\limits_{x \to 0} \frac{{x\left( {x - 2} \right)}}{x} = \mathop {\lim }\limits_{x \to 0} \left( {x - 2} \right) = 0 - 2 =  - 2\)

Để hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) thì hàm số \(y = f\left( x \right)\) phải liên tục tại điểm \({x_0} = 0\).  Khi đó:

\(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = f\left( 0 \right) \Leftrightarrow a =  - 2\).

Vậy với \(a =  - 2\) thì hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\).

Nguyễn Văn A
Xem chi tiết