4n2 +28n chia hết cho 8
n2 . (n2 -1) chia ht cho 12
4n2 +28n chia hết cho 8
n2 . (n2 -1) chia ht cho 12
*) Ta có : \(4n^2+28n=8n\left(\dfrac{1}{2}n+\dfrac{7}{2}\right)\)
Vì \(8n⋮8\) nên suy ra \(8n\left(\dfrac{1}{2}n+\dfrac{7}{2}\right)⋮8\)
Vậy \((4n^2+28n)⋮8\) . ( Đpcm )
4n2 +28n chia hết cho 8
n2 . (n2 -1) chia ht cho 12
4n2 +28n chia hết cho 8
n2 . (n2 -1) chia ht cho 12
n2 . (n2 -1) chia ht cho 12
Bài toán 11. Tìm n biết rằng: n3 - n2 + 2n + 7 chia hết cho n2 + 1.
Bài toán 12. Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5.
11:
n^3-n^2+2n+7 chia hết cho n^2+1
=>n^3+n-n^2-1+n+8 chia hết cho n^2+1
=>n+8 chia hết cho n^2+1
=>(n+8)(n-8) chia hết cho n^2+1
=>n^2-64 chia hết cho n^2+1
=>n^2+1-65 chia hết cho n^2+1
=>n^2+1 thuộc Ư(65)
=>n^2+1 thuộc {1;5;13;65}
=>n^2 thuộc {0;4;12;64}
mà n là số tự nhiên
nên n thuộc {0;2;8}
Thử lại, ta sẽ thấy n=8 không thỏa mãn
=>\(n\in\left\{0;2\right\}\)
CMR:
a) n4-10n3+35n2-50n+7 chia hết cho 24 với n nguyên
b) n4+4n3-8n2-16n+368 chia hết cho 384 với n chẵn
Giúp mình với
a. Đề bài sai, với \(n=1;2;3...\) thì đều sai hết
b. Đề bài sai, với \(n=0;2;4...\) thì vẫn sai hết
e viết nhầm đề
a) n4-10n3+35n2-50n+72 chia hết cho 24 với n nguyên
b) n4+4n3-8n2-16n+768 chia hết cho 384 với n chẵn
Chứng minh rằng với mọi số nguyên n thì (2 - n) ( n2 - 3n + 1) + n (n2 + 12 )+ 8 chia hết cho 5
\(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)
\(=2n^2-6n+2-n^3+3n^2-n+n^3+12n+8\)
\(=5n^2+5n+10\)
\(=5\left(n^2+n+2\right)⋮5\) (đpcm)
bài 1 tìm n thuộc Z
a,3n+2chia hết cho 2n--1
b.n+3 chia hết cho n-7
c,3n+2 chia hết cho n-4
d3n+1 chia ht cho 2n-1
e,3-n chia hết cho 2-3n
f,18n+3chia ht cho 7
g 16n-2chia ht cho 5
a, Để \(n\in Z\)
Ta có : \(3n+2⋮2n-1\)
\(6n-3n+2⋮2n-1\)
\(3\left(2n-1\right)+2⋮2n-1\)
Vì 2 \(⋮\)2n-1 hay 2n-1\(\in\)Ư'(2)={1;-1;-2;2}
Ta có bảng
2n-1 | -1 | 1 | 2 | -2 |
2n | 0 | 2 | 3 | -1 |
n | 0 | 1 | 3/2 | -1/2 |
Vậy n = {0;1}
\(b,\frac{n+3}{n-7}=\frac{n-7+10}{n-7}=1+\frac{10}{n-7}\)
=> 10 chia hết cho n - 7
=> n - 7 thuộc Ư\((10)\)
=> n - 7 \(\in\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Lập bảng :
n - 7 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
n | 8 | 6 | 9 | 5 | 12 | 2 | 17 | -3 |
\(c,\frac{3n+2}{n-4}=\frac{3n-12+14}{n-4}=\frac{3(n-4)+14}{n-4}=3+\frac{14}{n-4}\)
=> 14 chia hết cho n - 4
=> n - 4 \(\inƯ(14)\)= \(\left\{\pm1;\pm2;\pm7;\pm14\right\}\)
Lập bảng :
n - 4 | 1 | -1 | 2 | -2 | 7 | -7 | 14 | -14 |
n | 5 | 3 | 6 | 2 | 11 | -3 | 18 | -10 |
Tìm tất cả số nguyên n để 4n2 + 11n + 4 chia hết cho 4n - 1
(answer đầu tiên sẽ được đánh dấu thích nhé everybody)
\(\Leftrightarrow4n^2-n+12n-3+7⋮4n-1\)
\(\Leftrightarrow4n-1\in\left\{-1;7\right\}\)
hay \(n\in\left\{0;2\right\}\)