Giải pt \(3\sqrt{5x-1}-9\sqrt{9x+7}=2\sqrt{x+2}\)
giúp vs ạ!!!!!!!!!!!!!!!!!!!!
Giải pt \(3\sqrt{5x-1}-9\sqrt{9x+7}=2\sqrt{x+2}\)
giúp vs ạ!!!!!!!!!!!!!!!!!!!!
giải pt:
a) \(4\sqrt{x-2}+\sqrt{9x-18}-\sqrt{\dfrac{x-2}{4}}=26\)
b) \(3x+\sqrt{4x^2-8x+4}=1\)
c) \(\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)=7\)
giúp mk vs ạ mk cần gấp
a,ĐKXĐ:\(x\ge2\)
\(4\sqrt{x-2}+\sqrt{9x-18}-\sqrt{\dfrac{x-2}{4}}=26\\ \Leftrightarrow4\sqrt{x-2}+3\sqrt{x-2}-\dfrac{\sqrt{x-2}}{2}=26\\ \Leftrightarrow8\sqrt{x-2}+6\sqrt{x-2}-\sqrt{x-2}=52\\ \Leftrightarrow13\sqrt{x-2}=52\\ \Leftrightarrow\sqrt{x-2}=4\\ \Leftrightarrow x-2=16\\ \Leftrightarrow x=18\left(tm\right)\)
b,ĐKXĐ:\(x\in R\)
\(3x+\sqrt{4x^2-8x+4}=1\\ \Leftrightarrow2\sqrt{x^2-2x+1}=1-3x\\ \Leftrightarrow\left|x-1\right|=\dfrac{1-3x}{2}\\ \Leftrightarrow\left[{}\begin{matrix}x-1=\dfrac{1-3x}{2}\\x-1=\dfrac{3x-1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x-2=1-3x\\2x-2=3x-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)
c, ĐKXĐ:\(x\ge0\)
\(\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)=7\\ \Leftrightarrow\sqrt{x}\left(2\sqrt{x}+1\right)-2\left(2\sqrt{x}+1\right)=7\\ \Leftrightarrow2x+\sqrt{x}-4\sqrt{x}-2=7\\ \Leftrightarrow2x-3\sqrt{x}-9=0\\ \Leftrightarrow\left(2x+3\sqrt{x}\right)-\left(6\sqrt{x}+9\right)=0\\ \Leftrightarrow\sqrt{x}\left(2\sqrt{x}+3\right)-3\left(2\sqrt{x}+3\right)=0\\ \Leftrightarrow\left(\sqrt{x}-3\right)\left(2\sqrt{x}+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=3\\2\sqrt{x}=-3\left(vô.lí\right)\end{matrix}\right.\\ \Leftrightarrow x=9\left(tm\right)\)
2) giải pt
3) \(\sqrt{4x+1}=x+1\)
4) \(2\sqrt{x-1}+\dfrac{1}{3}\sqrt{9x-9}=15\)
5) \(\sqrt{4x^2-12x+9}=7\)
6) \(5\sqrt{9x-9}-\sqrt{4x-4}-\sqrt{x-1}=36\)
giúp mk vs ah
3: Ta có: \(\sqrt{4x+1}=x+1\)
\(\Leftrightarrow x^2+2x+1=4x+1\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=2\left(nhận\right)\end{matrix}\right.\)
4: Ta có: \(2\sqrt{x-1}+\dfrac{1}{3}\sqrt{9x-9}=15\)
\(\Leftrightarrow3\sqrt{x-1}=15\)
\(\Leftrightarrow x-1=25\)
hay x=26
5: Ta có: \(\sqrt{4x^2-12x+9}=7\)
\(\Leftrightarrow\left|2x-3\right|=7\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=7\\2x-3=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=10\\2x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)
1) giải pt:
\(\sqrt{x-3}-2\sqrt{x^2-9}=0\)
giúp mk vs ạ mk cần gấp
ĐKXĐ: \(x\ge3\)
\(\Leftrightarrow\sqrt{x-3}=2\sqrt{x^2-9}\)
\(\Leftrightarrow x-3=4\left(x-3\right)\left(x+3\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\4\left(x+3\right)=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{11}{4}\left(loại\right)\end{matrix}\right.\)
giải pt:
\(3\sqrt{5x-1}-\sqrt{9x+7}=2\sqrt{x+2}\)
\(3\sqrt{5x-1}-\sqrt{9x+7}=2\sqrt{x+2}\) \(\left(x\ge\dfrac{1}{5}\right)\)
\(\Leftrightarrow3\sqrt{5x-1}=\sqrt{9x+7}+2\sqrt{x+2}\)
\(\Leftrightarrow45x-9=13x+15+4\sqrt{9x^2+25x+14}\)
\(\Leftrightarrow8x-6=\sqrt{9x^2+25x+14}\)
\(\Leftrightarrow\left\{{}\begin{matrix}8x-6\ge0\\64x^2-96x+36=9x^2+25x+14\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{4}\\\left[{}\begin{matrix}x=2\left(n\right)\\x=\dfrac{1}{5}\left(l\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy x = 2
Bài này liên hợp cũng được :"> nhưng không biết biện luận thế nào cho pt kia vô no TT.TT
\(pt\Leftrightarrow\left(2\sqrt{x+2}-4\right)+\left(\sqrt{9x+7}-5\right)+\left(9-3\sqrt{5x-1}\right)=0\)
giải pt
a) \(\sqrt{x^2+x+1}+\sqrt{3x^2+3x+2}=\sqrt{5x^2+5x-1}\)
b) \(\sqrt{x^2+x+4}+\sqrt{x^2+x+1}=\sqrt{2x^2+2x+9}\)
c) \(\sqrt{3x^2-5x+7}+\sqrt{3x^2-7x+2}=3\)
d) \(\sqrt{x^2+3x+2}=\sqrt{2x^2+9x+7}-\sqrt{x^2+6x+5}\)
a/ đk: \(\left[{}\begin{matrix}x\le\frac{-5-3\sqrt{5}}{10}\\x\ge\frac{-5+3\sqrt{5}}{10}\end{matrix}\right.\)\(\sqrt{x^2+x+1}+\sqrt{3x^2+3x+2}=\sqrt{5x^2+5x-1}\)
\(\Leftrightarrow\sqrt{x^2+x+1}+\sqrt{3\left(x^2+x+1\right)-1}=\sqrt{5\left(x^2+x+1\right)-6}\)
đặt\(x^2+x+1=t\left(t>0\right)\)
\(\sqrt{t}+\sqrt{3t-1}=\sqrt{5t-6}\)
bình phương 2 vế pt trở thành:
\(t+3t-1+2\sqrt{t\left(3t-1\right)}=5t-6\)
\(\Leftrightarrow2\sqrt{3t^2-t}=t-5\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge5\\\left(2\sqrt{3t^2-t}\right)^2=\left(t-5\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge5\\11t^2+6t-25=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge5\\\left[{}\begin{matrix}t=\frac{-3+2\sqrt{71}}{11}\\t=\frac{-3-2\sqrt{71}}{11}\end{matrix}\right.\end{matrix}\right.\)=> không có gtri t nào t/m
vậy pt vô nghiệm
a/ ĐKXĐ: ...
Đặt \(x^2+x+1=a>0\)
\(\sqrt{a}+\sqrt{3a-1}=\sqrt{5a-6}\)
\(\Leftrightarrow4a-1+2\sqrt{3a^2-a}=5a-6\)
\(\Leftrightarrow2\sqrt{3a^2-a}=a-5\) (\(a\ge5\))
\(\Leftrightarrow4\left(3a^2-a\right)=a^2-10a+25\)
\(\Leftrightarrow11a^2+6a-25=0\)
Nghiệm xấu quá, chắc bạn nhầm lẫn đâu đó
b/
Đặt \(x^2+x+1=a>0\)
\(\sqrt{a+3}+\sqrt{a}=\sqrt{2a+7}\)
\(\Leftrightarrow2a+3+2\sqrt{a^2+3a}=2a+7\)
\(\Leftrightarrow\sqrt{a^2+3a}=2\)
\(\Leftrightarrow a^2+3a-4=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-4\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x^2+x+1=1\)
c/ ĐKXĐ: ...
\(\Leftrightarrow\sqrt{3x^2-5x+7}=3-\sqrt{3x^2-7x+2}\)
\(\Rightarrow3x^2-5x+7=3x^2-7x+11-6\sqrt{3x^2-7x+2}\)
\(\Leftrightarrow3\sqrt{3x^2-7x+2}=2-x\) (\(x\le2\))
\(\Leftrightarrow9\left(3x^2-7x+2\right)=x^2-4x+4\)
\(\Leftrightarrow26x^2-59x+14=0\Rightarrow\left[{}\begin{matrix}x=2\\x=\frac{7}{26}\end{matrix}\right.\)
Do biến đổi ko tương đương nên cần thay lại nghiệm vào pt ban đầu kiểm tra
d/ ĐKXĐ: ...
\(\Leftrightarrow\sqrt{x^2+3x+2}+\sqrt{x^2+6x+5}=\sqrt{2x^2+9x+7}\)
\(\Leftrightarrow2x^2+9x+7+2\sqrt{\left(x^2+3x+2\right)\left(x^2+6x+5\right)}=2x^2+9x+7\)
\(\Leftrightarrow\sqrt{\left(x+1\right)^2\left(x+2\right)\left(x+5\right)}=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=-2\left(l\right)\\x=-5\end{matrix}\right.\)
Giải phương trình:
1. \(\sqrt{36x-6}-\sqrt{9x-9}-\sqrt{4x-4}=16-\sqrt{x-1}\)
2. \(\dfrac{1}{2}\sqrt{x+1}-\dfrac{3}{2}\sqrt{9x+9}+24\sqrt{\dfrac{x+1}{64}}=-17\)
3. \(-5x+7\sqrt{x}+12=0\)
Em cảm ơn ạ
2, \(\dfrac{1}{2}\sqrt{x+1}-\dfrac{3}{2}\sqrt{9x+9}+24\sqrt{\dfrac{x+1}{64}}=-17\)
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x+1}-\dfrac{9}{2}\sqrt{x+1}+3\sqrt{x+1}=-17\)
\(\Leftrightarrow-\sqrt{x+1}=-17\)
\(\Leftrightarrow x+1=289\left(x>0\right)\)
\(\Leftrightarrow x=288\)
Vậy x = 288
3, \(-5x+7\sqrt{x}+12=0\)
\(\Leftrightarrow-5x+12\sqrt{x}-5\sqrt{x}+12=0\)
\(\Leftrightarrow\sqrt{x}\left(12-5\sqrt{x}\right)+\left(12-5\sqrt{x}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}+1\right)\left(12-5\sqrt{x}\right)=0\)
Do \(\sqrt{x}+1>0\)
\(\Rightarrow12-5\sqrt{x}=0\Leftrightarrow x=\dfrac{144}{25}\)
Vậy...
1. (Đề có chút sai sai nên mình sửa lại nhé) \(\sqrt{36x-36}-\sqrt{9x-9}-\sqrt{4x-4}=16-\sqrt{x-1}\)
(ĐK: \(x\ge1\))
\(\Leftrightarrow\sqrt{36\left(x-1\right)}-\sqrt{9\left(x-1\right)}-\sqrt{4\left(x-1\right)}=16-\sqrt{x-1}\)
\(\Leftrightarrow6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}+\sqrt{x-1}=16\)
\(\Leftrightarrow2\sqrt{x-1}=16\)
\(\Leftrightarrow\sqrt{x-1}=8\)
\(\Leftrightarrow x-1=64\)
\(\Leftrightarrow x=65\left(tm\right)\)
Vậy pt đã cho có nghiệm x=65.
2. \(\dfrac{1}{2}\sqrt{x+1}-\dfrac{3}{2}\sqrt{9x+9}+24\sqrt{\dfrac{x+1}{64}}=-17\)
(ĐK: \(x\ge-1\))
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x+1}-\dfrac{3}{2}\sqrt{9\left(x+1\right)}+3\sqrt{x+1}=-17\)
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x+1}-\dfrac{9}{2}\sqrt{x+1}+3\sqrt{x+1}=-17\)
\(\Leftrightarrow-\sqrt{x+1}=-17\)
\(\Leftrightarrow\sqrt{x+1}=17\)
\(\Leftrightarrow x+1=289\)
\(\Leftrightarrow x=288\left(tm\right)\)
Vậy \(S=\left\{288\right\}\)
3. \(-5x+7\sqrt{x}+12=0\) (ĐK: \(x\ge0\))
\(\Leftrightarrow5x-7\sqrt{x}-12=0\)
\(\Leftrightarrow5x+5\sqrt{x}-12\sqrt{x}-12=0\)
\(\Leftrightarrow5\sqrt{x}\left(\sqrt{x}+1\right)-12\left(\sqrt{x}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}+1\right)\left(5\sqrt{x}-12\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}+1=0\\5\sqrt{x}-12=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=-1\left(vô.lý\right)\\5\sqrt{x}=12\end{matrix}\right.\Leftrightarrow\sqrt{x}=\dfrac{12}{5}\Leftrightarrow x=\dfrac{144}{25}\left(tm\right)\)
Vậy pt có nghiệm \(x=\dfrac{144}{25}\)
Ai dậy r giúp vs :33 1 câu cx đc nhé :v toàn giải pt hết nhé
1) \(4x^2+\left(8x-4\right)\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}.\)
2) \(\left(5x+8\right)\sqrt{2x-1}+7x\sqrt{x+3}=9x+18-\left(x+26\right)\sqrt{x-1}\)
3) \(\sqrt[3]{3x+1}+\sqrt[3]{5-x}+\sqrt[3]{2x-9}-\sqrt[3]{4x-3}=0\)
4) \(\left(x+17\right)\sqrt{4-x}+\left(20-x\right)\sqrt{x+1}-9\sqrt{4-x}.\sqrt{x+1}=36\)
Câu 1 là \(\left(8x-4\right)\sqrt{x}-1\) hay là \(\left(8x-4\right)\sqrt{x-1}\)?
Câu 1:ĐK \(x\ge\frac{1}{2}\)
\(4x^2+\left(8x-4\right)\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)
<=> \(\left(4x^2-3x-1\right)+4\left(2x-1\right)\sqrt{x}-2\sqrt{\left(2x-1\right)\left(x+3\right)}\)
<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}\left(2\sqrt{x\left(2x-1\right)}-\sqrt{x+3}\right)=0\)
<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{8x^2-4x-x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)
<=>\(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{\left(x-1\right)\left(8x+3\right)}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)
<=> \(\left(x-1\right)\left(4x+1+2\sqrt{2x-1}.\frac{8x+3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}\right)=0\)
Với \(x\ge\frac{1}{2}\)thì \(4x+1+2\sqrt{2x-1}.\frac{8x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}>0\)
=> \(x=1\)(TM ĐKXĐ)
Vậy x=1
câu 2 ĐK \(x\ge1\)
\(\left(5x+8\right)\sqrt{2x-1}+7x\sqrt{x+3}=9x+18-\left(x+26\right)\sqrt{x-1}=0\)
<=> \(\left(5x+8\right)\left(\sqrt{2x-1}-1\right)+7x\left(\sqrt{x+3}-2\right)+\left(x+26\right)\sqrt{x-1}+10\left(x-1\right)=0\)
<=>\(\left(5x+8\right).\frac{2x-2}{\sqrt{2x-1}+1}+7x.\frac{x+3-4}{\sqrt{x+3}+2}+\left(x+26\right)\sqrt{x-1}+10\left(x-1\right)=0\)
<=> \(\sqrt{x-1}\left(\frac{2\left(5x+8\right)\sqrt{x-1}}{\sqrt{2x-1}+1}+\frac{7x\sqrt{x-1}}{\sqrt{x+3}+2}+\left(x+26\right)+10\sqrt{x-1}\right)=0\)
Với \(x\ge1\)thì cái trong ngoặc >0
=> \(x=1\)
Vậy x=1
giải pt \(\sqrt{4x^2+5x+1}+3=2\sqrt{x^2-x+1}+9x\)