Cho x+y=1. Tìm min A = (x^2+4y)(x^2+4y)+ 8xy
Tìm Min:
\(A=x^2+2y^2-2xy-4y+5\)
\(B=5x^2+8xy+5y^2-2x+2y\)
a: A=x^2-2xy+y^2+y^2-4y+4+1
=(x-y)^2+(y-2)^2+1>=1
Dấu = xảy ra khi x=y=2
b: B=4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1-2
=(2x+2y)^2+(x-1)^2+(y+1)^2-2>=-2
Dấu = xảy ra khi x=1 và y=-1
1) Cho x,y>0 và x+y=< 1 Tìm min A = \(\frac{1}{x^2+y^2}+\frac{1}{xy}\)
2) Cho x >= 3y và x;y > 0 Tìm min A = \(\frac{x^2+y^2}{xy}\)
3) Cho x >= 4y và x;y > 0 Tìm min A = xy/(x^2 +y^2)
\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)
Dấu "=" <=> x= y = 1/2
\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)
\(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" <=> x = 3y
Tìm số x, y thỏa mãn \(x^2-8xy+20y^2-4y+1\)
Thiếu đề !
Chuyển biểu thức , ta có :
x2 - 8xy + 20y2 - 4y + 1
= x2 - 8xy + 16y2 + 4y2 - 4y + 1
= (x2 - 8xy + 16y2) + (4y2 - 4y + 1)
= (x - 4y)2 + (2y + 1)2
Còn lại do thiếu đề nên không thể làm tiếp
Ah, mình đánh thiếu mất đề là \(x^2-8xy+20y^2-4y+1=0\)
1.Tìm Min
A=x^4-8xy-x^3y+x^2y^2-xy^3+y^4+1017
B=x^2+xy+y^2-3x-3y
2.Tìm Max
A=-x^2+2xy-4y^2+2x+10y+5
B= -x2 - 2y2 - 2xy + 2x - 2y -15
Cho hai số thực x y, thỏa mãn \(x^2+y^2-2x-4y-4=0\)
cm: \(-2\le x\le4\left(\forall y\in R\right)\)
tìm Min \(S=3x+4y\)
\(x^2+y^2-2x-4y-4=0\\ \Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2-9=0\\ \Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2=9=0^2+3^2=0^2+\left(-3\right)^2\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1=0\\y-2=3\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=3\\y-2=0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=0\\y-2=-3\end{matrix}\right.\\\left\{{}\begin{matrix}x-1=-3\\y-2=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\\\left\{{}\begin{matrix}x=4\\y=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\\\left\{{}\begin{matrix}x=-2\\y=2\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow-2\le x\le4\left(y\in R\right)\)
Ta có \(S=3x+4y\)
Mà \(x\ge-2;y\ge-1\Leftrightarrow S\ge3\cdot\left(-2\right)+4\cdot\left(-1\right)=-6-4=-10\)
Vậy GTNN của S là \(-10\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)
Lời giải:
ĐKĐB $\Leftrightarrow (x^2-2x+1)+(y^2-4y+4)-9=0$
$\Leftrightarrow (x-1)^2+(y-2)^2-9=0$
$\Rightarrow (x-1)^2=9-(y-2)^2\leq 9$
$\Rightarrow -3\leq x-1\leq 3$
$\Leftrightarrow -2\leq x\leq 4$
-------------
Đặt $x-1=a; y-2=b$ thì bài toán trở thành:
Cho $a,b$ thực thỏa mãn $a^2+b^2=9$
Tìm min $S=3a+4b+11$
Áp dụng BĐT Bunhiacopxky:
$(3a+4b)^2\leq (a^2+b^2)(3^2+4^2)=9.25$
$\Rightarrow -15\leq 3a+4b\leq 15$
$\Rightarrow 3a+4b\geq -15$
$\Rightarrow S=3a+4b+11\geq -4$
Vậy $S_{\min}=-4$ khi $x=\frac{-4}{5}; y=\frac{-1}{5}$
Tìm max, min:
\(A=x^2+2xy-4y+2017\)
\(B=x^2-2x+2017\)
\(C=-4x^2+8xy-3y^2+y-2017\)
\(D=-2x^2+4x+2017\)
câu A thiếu đề
B=\(x^2-2x+2017=\left(x-1\right)^2+2016>=2016\)
Min B=2016 khi x-1=0<=>x=1
+)D=\(-2x^2+4x+2017=-2\left(x^2-2x+1\right)+2019=-2\left(x-1\right)^2+2019< =2019\)
=>Max D=2019, dấu '=' xảy ra khi x-1=0<=>x=1
\(A=x^2+2xy+3y^2-4y+2017\)
\(A=\left(x^2+2xy+y^2\right)+\left(2y^2-4y+2\right)+2015\)
\(A=\left(x^2+2xy+y^2\right)+2\left(y^2-2y+1\right)+2015\)
\(A=\left(x+y\right)^2+2\left(y-1\right)^2+2015\ge2015\)
Vậy Amin=2015 <=> x=-1 và y=1
Tìm đa thức P, biết: a, P+ ( 3x^2-4xy )= 6y^2-9xy+x^2 b, ( 4y^2-8xy )-P=5x^2-12xy+4y^2 c, P- ( x^2-2y^2+3z^2 )+ ( 3x^2-y^2+2z^2 )=2x^2-3y^2-z^2
Cho x,y là 2 số thực thoả mãn x+y>0 và x^2+y^2+8xy/x+y=16
Tìm GTNN của Q=x^2-2x+4y+100
\(x^2+y^2+\frac{8xy}{x+y}=16\)
\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y\right)+8xy-16\left(x+y\right)=0\)
\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y-4\right)+4x^2+4y^2+8xy-16\left(x+y\right)=0\)
\(\Leftrightarrow\left(x^2+y^2\right)\left(x+y-4\right)+4\left(x+y\right)^2-16\left(x+y\right)=0\)
\(\Leftrightarrow\left(x+y-4\right)\left(x^2+y^2+4x+4y\right)=0\)
\(\Leftrightarrow x+y-4=0\)(vì \(x^2+y^2+4x+4y>0\))
\(\Leftrightarrow y=4-x\).
\(Q=x^2-2x+4y+100=x^2-2x+4\left(4-x\right)+100\)
\(=x^2-6x+116=\left(x-3\right)^2+107\ge107\)
Dấu \(=\)khi \(x=3\Rightarrow y=1\).
Tìm min \(P=x^2+4y^2+\dfrac{75}{x}+\dfrac{1}{y}\). Biết \(x,y>0;x+y>=6\)
\(2P=2x^2+8y^2+\dfrac{150}{x}+\dfrac{2}{y}\)
\(=\dfrac{7}{5}x^2+7y^2+\left(\dfrac{3}{5}x^2+\dfrac{75}{x}+\dfrac{75}{x}\right)+\left(y^2+\dfrac{1}{y}+\dfrac{1}{y}\right)\)
Ta có: \(\left(5+1\right)\left(x^2+5y^2\right)\ge5\left(x+y\right)^2\Rightarrow\dfrac{7\left(x^2+5y^2\right)}{5}\ge\dfrac{7\left(x+y\right)^2}{6}\ge42\)
\(\Rightarrow2P\ge42+3\sqrt[3]{\dfrac{3.75^2.x^2}{5x^2}}+3\sqrt[3]{\dfrac{y^2}{y^2}}=90\)
\(\Rightarrow P\ge45\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(5;1\right)\)