Chứng minh rằng : \(x^2+3xy+4y^2+1>0\) với mọi x,y
chứng minh rằng
a) x^2 + 2xy + y^2 +1 > 0 với mọi x
b) x^2 - x + 1 > 0 với mọi số thực x
a) Ta có:
\(x^2+2xy+y^2+1\)
\(=\left(x+y\right)^2+1\)
Vì \(\left(x+y\right)^2\ge0\) với mọi x và y
\(\Rightarrow\left(x+y\right)^2+1\ge1\)
\(\Rightarrow\left(x+y\right)^2+1>0\) với mọi x
b) Ta có:
\(x^2-x+1\)
\(=x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) với mọi x
chứng minh rằng 2*x^2+4*y^2+4*x*y-6*x+10>0 với mọi số thực x và y
\(A=2x^2+4y^2+4xy-6z+10\)
\(=\left(x^2+4y^2+4xy\right)+\left(x^2-6x+9\right)+1\)
\(=\left(x+2y\right)^2+\left(x-3\right)^2+1\)
Mà \(\hept{\begin{cases}\left(x+2y\right)^2\ge0\\\left(x-3\right)^2\ge0\end{cases}}\)
\(\Rightarrow A\ge0+0+1=1>0\)
Vậy ...
Chứng minh rằng: x2 - x +1 > 0 với mọi số thực x ?
\(x^2-x+1>0\)
\(\Leftrightarrow x^2-2x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}>0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)(luôn đúng)
\(\RightarrowĐPCM\)
b1 : cm cac bđt sau thỏa mãn x y
b)x^2-5y^2+2x-4xy-10y+14>0
a) x^2-xy+y^2+1>0
b2: chứng minh rằng
a)x^2 +x+1>0>0 với mọi x
b)x^2-xy+y^2>0 với mọi x,y ko đồng thời= 0
Ta có : x2 - xy + y2 + 1
\(=x^2-2x.\frac{y}{2}+\frac{y^2}{4}+\frac{3y^2}{4}+1\)
\(=\left(x-\frac{y}{2}\right)^2+\left(\frac{3y}{2}\right)^2+1\)
Mà \(\left(x-\frac{y}{2}\right)^2\ge0\forall x\)
\(\left(\frac{3y}{2}\right)^2\ge0\forall x\)
Nên \(\left(x-\frac{y}{2}\right)^2+\left(\frac{3y}{2}\right)^2+1\ge1\forall x\)
Vậy \(\left(x-\frac{y}{2}\right)^2+\left(\frac{3y}{2}\right)^2+1>0\forall x\)
Hay : x2 - xy + y2 + 1 > 0 \(\forall x\)
Chứng minh rằng các biểu thức sau luôn nhận giá trị âm với mọi giá trị của biến
R=-x2-y2+8x+4y-21
-(x2-8x+16)-(y2-4y+4)= -(x-4)2-(y-2)2
Ta có : -(x-4)2<= 0
suy ra: -(x-4)2-(y-2)2<=0 (dpcm)
Chứng minh rằng:
X2+X-1 nhỏ hơn 0 với mọi giá trị của X
Bạn viết thiếu đề bài nhé, phải là -x2 + x - 1 nhỏ hơn hoặc bằng 0 với mọi x!! ^ . ^
Ta có:
-x2 + x - 1 = - (x2 - x + 1)
= - (x - 1)2 (hằng đẳng thức đấy bạn)
Vì (x - 1)2 \(\ge\)0 với mọi x => - (x - 1)2 \(\le\)với mọi x.
Dấu bằng xảy ra <=> x - 1 = 0 <=> x = 1.
_Kik nhé!! ^ ^
M.n làm ơn giúp mink nha, cảm ơn!!!!
Chứng minh rằng với mọi số nguyên x,y thì:
a) \(x\left(x^2-2x\right)+\left(x-2x\right)\) chia hết cho x - 2
b) \(x^3y^2-3yx^2+xy\) chia hết cho xy
c) \(x^3y^2-3x^2y^3+xy^2\) chia hết cho \(x^2-3xy+1\)
a) \(x\left(x^2-2x\right)+\left(x-2x\right)=x^2\left(x-2\right)+x\left(x-2\right)=\left(x-2\right)\left(x^2+x\right)⋮x-2\forall x,y\in Z\)
b) \(x^3y^2-3yx^2+xy=xy\left(x^2y-3x+1\right)⋮xy\forall x,y\in Z\)
c) \(x^3y^2-3x^2y^3+xy^2=xy^2\left(x^2-3xy+1\right)⋮\left(x^2-3xy+1\right)\forall x,y\in Z\)
Chứng minh rằng : 3^2 -6x +4 >0 với mọi số thực x
giup em vs mọi người
Sửa đề: \(A=3x^2-6x+4=3\left(x^2-2x+\dfrac{4}{3}\right)\)
\(A=3\left(x^2-2x+1+\dfrac{1}{3}\right)\)
\(A=3\left(x^2-2x+1\right)+1\)
\(A=3\left(x-1\right)^2+1>0\left(đpcm\right)\)
Chứng minh rằng \(x^2-x+\frac{3}{4}\)>0 với mọi giá trị của x
x^2-2.1/2x+1/4-1/4+3/4
=(x-1/2)^2+1/2 luôn luôn lớn hơn 0