chứng minh
\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc-ab\right)\)
Chứng minh \(\left(a+b+c\right)^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
Sửa đề : CM \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
Ta có : \(VT=a^3+b^3+c^3-3abc\)
\(=\left(a^3+b^3+3a^2b+3b^2a\right)+c^3-3a^2b-3b^2a-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2-3ab\right]\)
\(=\left(a+b+c\right)\left[a^2+b^2+2ab-ac-bc+c^2-3ab\right]\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=VP\)
\(\left(đpcm\right)\)
Chứng minh \(\left(a^2-bc\right)^3+\left(b^2-ac\right)^3+\left(c^2-ab\right)^3\) >= \(3\left(a^2-bc\right)\left(b^2-ac\right)\left(c^2-ab\right)\)tớ thấy giống HĐT a^3+b^3+c^3=3abc lắm các ban giúp mình nhé
bạn ơi, hình như bạn nhớ nhầm rồi đấy, ko có HĐT đó đâu, mà có HĐT thức ấy nhưng a+b+c = 0 nữa cơ
Đặt a^2-bc=x, b^2-ac=y, c^2-ab=z
x^3+y^3+z^3>=3abc
( tự chuyển vế phân )<=> (x+y+z)(x^2+y^2+z^2-xy-yz-zx) >= 0
Ta có: (x-y)^2+(y-z)^2+(z-x)^2 >= 0
<=> x^2+y^2+z^2-xy-yz-zx >= 0 (1)
( coi a=x, b=y, c=z )
=> a^2+b^2+c^2-ab-bc-ca >= 0
<=> (a^2-bc)+(b^2-ca)+(c^2-ab) >= 0
<=> x+y+z >= 0 (2)
Từ (1),(2) => (x+y+z)(x^2+y^2+z^2-xy-yz-zx) >= 0
=> Đpcm
Chứng minh các hằng đẳng thức : a, \(\left(a+b+c\right)^3-a^3-b^3-c^3=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
b, \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
a) \(VT=\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=\left(a+b\right)^3+3c\left(a+b\right)\left(a+b+c\right)+c^3-a^3-b^3-c^3\)
\(=a^3+b^3+c^3+3ab\left(a+b\right)+3\left(a+b\right)\left(ac+bc+c^2\right)-a^3-b^3-c^3\)
\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)
\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)=VP\)
b) \(VT=a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ca-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=VP\)
Chứng minh rằng: \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2c^2-ab-bc-ca\right)\)
Biến đổi vế trài ta có
a3+b3+c3-3abc+3ab(a+b)-3ab(a+b)
=(a+b)(a2-ab+b2)-3ab(a+b+c)+3ab(a+b)+c3
=(a+b)(a+b)2+c3-3ab(a+B+c)
=......................
Bn cứ nhóm lại là = vế phải.
bạn thiếu dấu cộng giữa b2 và c2 vì vậy vế phải là (a+b+c)(a2+b2+c2 -ab-bc-ac)
Ta có : a3+b3+c3 -3abc = (a+b)3 -3ab(a+b)+c3 -3abc = (a+b)3 +c3 -3ab(a+b+c)
=(a+b+c)3 -3(a+b)c(a+b+c)-3ab(a+b+c)
=(a+b+c)((a+b+c)2-3(ac+bc)-3ab)
=(a+b+c)(a2+b2+c2 +2ab +2ac +2bc -3ab -3bc -3ac )
=(a+b+c)(a2+b2 +c2-ab-bc-ac)=vp (đpcm)
Có: a3+b3+c3−3abc
=a3+3a2b+3ab2+b3+c3−3a2b−3ab2−3abc
=(a+b)3+c3−3ab(a+b+c)
=(a+b+c)(a2+2ab+b2−(a+b)c+c2)−3ab(a+b+c)
=(a+b+c)(a2+b2+c2+2ab−ac−bc−3ab)
=(a+b+c)(a2+b2+c2−ab−ac−bc)(đpcm)
Cho a,b,c dương. Chứng minh
\(\dfrac{1}{\left(a+b\right)^2}+\dfrac{1}{\left(b+c\right)^2}+\dfrac{1}{\left(c+a\right)^2}\ge\dfrac{3\sqrt{3abc\left(a+b+c\right)}.\left(a+b+c\right)^2}{4\left(ab+bc+ca\right)^3}\)
Chứng minh rằng :
\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2c^2-ab-bc-ca\right)\)
VT = a3 + b3 + c3 - 3abc = (a + b)(a2 - ab + b2) + c3 - 3abc
= (a + b)(a2 + 2ab + b2 - 3ab) + c3 - 3abc
= (a + b)3 - 3ab(a + b) + c3 - 3abc
= (a + b+ c)[(a + b)2 - c(a + b) + c2] - 3ab(a + b+ c)
= (a + b + c))(a2 + 2ab + b2 - ac - bc + c2 - 3abc)
= (a + b + c)(a2 + b2 + c2 - ab - ac - bc) = VP
=> ĐPCM
Sửa đề :
VP= (a+b+c)(a2+b2+c2-ab-bc-ca)
=a3+ab2+ac2-a2b-abc-ca2+ba2+b3+bc2-ab2-b2c-abc+ca2+cb2+c3-abc-bc2-c2a
=a3+b3+c3-3abc
Cách này đỡ phức tạp hơn cách của edogawa conan
Biến đổi VP thì dễ hơn -.-
Sửa đề như anh Sơn :>
VP = ( a + b + c )( a2 + b2 + c2 - ab - bc - ca )
= a( a2 + b2 + c2 - ab - bc - ca ) + b( a2 + b2 + c2 - ab - bc - ca ) + c( a2 + b2 + c2 - ab - bc - ca )
= a3 + ab2 + ac2 - a2b - abc - ca2 + a2b + b3 + bc2 - ab2 - b2c - abc + ca2 + cb2 + c3 - abc - bc2 - c2a
= a3 + b3 + c3 - 3ab = VT ( đpcm )
Chứng minh rằng: \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2c^2-ab-bc-ca\right)\)
\(VT=a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=VP\)
\(VP\left(đề\right)=\left(a+b+c\right)\left(a^2+b^2c^2-ab-bc-ca\right)\ne VP@TN\)
cho a,b,c là 3 cạnh của tam giác. Chứng minh rằng:
a) \(\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}< 2\)
b)\(a^3+b^3+c^3+3abc>ab\left(a+b\right)+bc\left(b+c\right)+ac\left(a+c\right)\)
a)\(\dfrac{a}{b+c}< \dfrac{2a}{a+b+c}\) tương tự ta có ĐPCM
b)chính nó là BĐT Schur bậc 3 cách c/m nhiều vô kể
CM: \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
Giải:
Ta có: \(VT=a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc\)
\(=\left(a+b+c\right)^3\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
\(=VP\) (Đpcm)
Ta có:
\(VP=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
\(=a^3+ab^2+ac^2-a^2b-abc-a^2c+a^2b+b^3+bc^2-ab^2-b^2c-abc+a^2c+b^2c+c^3-abc-bc^2-ac^2\)
\(=a^3+b^3+c^3-3abc=VT\)
\(\rightarrow\) đpcm
Chúc bạn học tốt!!!
\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
Ta có VP: \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
\(=a^3+ab^2+ac^2-a^2b-abc-a^2c+ba^2+b^3+bc^2-ab^2-b^2c-bac+ca^2+cb^2+c^3-cab-bc^2-ac^2\)
\(=a^3+b^3+c^3-3abc\)
Vậy \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)