Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thanh Trúc

Những câu hỏi liên quan
TᖇẦᑎ ĐỨᑕ ᗩᑎᕼ
Xem chi tiết
Vũ Quang Huy
20 tháng 3 2022 lúc 9:47

tham khảo

undefined

TᖇẦᑎ ĐỨᑕ ᗩᑎᕼ
Xem chi tiết
Hồ Lê Thiên Đức
20 tháng 3 2022 lúc 19:43

Vì x,y là các số nguyên tố => x,y > 1

Lại có \(p^2-2q^2=17\) => \(p^2>17\Leftrightarrow p\ge5\)

-Xét p = 5, thay vào ta có q = 2

Khi đó, p + q = 7

-Xét p > 5, vì p là số nguyên tố nên p có dạng 6k + 1 hoặc 6k + 5 (k ∈ Z+)

-Xét p = 6k + 1, ta có\(\left(6k+1\right)^2-2q^2=17\Leftrightarrow36k^2+12k+1-2q^2=17\Leftrightarrow36k^2+12k-2q^2=16\Leftrightarrow18k^2+12k-q^2=8\)Ta thấy VP ⋮ 2 => VT ⋮ 2 mà 18k^2 + 12k  ⋮ 2 => q^2  ⋮ 2 <=> q = 2 (vì q là số nguyên tố). Thay vào ta được p = 5

-Xét p = 6k + 5, ta có

\(\left(6k+5\right)^2-2q^2=17\Leftrightarrow36k^2+60k+25-2q^2=17\Leftrightarrow36k^2+60k+24-2q^2=16\Leftrightarrow18k^2+30k+12-q^2=8\)Chứng minh tương tự, ta có q = 2 => p = 5

Vậy p + q = 7

Lam Vu Thien Phuc
Xem chi tiết
Trần Đức Thắng
17 tháng 7 2015 lúc 10:29

Nhiều quá 

 a, ( x+ y) = - p => ( x + y)^2 = p^2 

=> x^2 + 2xy + y^2 = p^2 

=> x^2 + 2q + y^2  =p^2 

=> x^2 + y^2 = p^2 - 2q

VAB Dũng
Xem chi tiết
Nguyễn Minh Trang
Xem chi tiết
Nguyễn Đức Trí
7 tháng 8 2023 lúc 13:06

\(p^2-2q^2=1\)

\(\Rightarrow p^2=2q^2+1\)

\(\Rightarrow p\) là số lẻ

Đặt \(p=2n+1\Rightarrow p^2=4n^2+4n+1\)

mà \(p^2=2q^2+1\)

\(\Rightarrow4n^2+4n+1=2q^2+1\)

\(\Rightarrow2\left(2n^2+2n\right)=2q\)

\(\Rightarrow2n^2+2n=q\)

\(\Rightarrow2\left(n^2+n\right)=q\)

\(\Rightarrow q\) là số chẵn

mà \(q\) là số nguyên tố

\(\Rightarrow q=2\)

\(\Rightarrow p^2=2.2^2+1=9\Rightarrow p=3\)

Vậy \(\left(p;q\right)\in\left\{3;2\right\}\) thỏa mãn đề bài

HT.Phong (9A5)
7 tháng 8 2023 lúc 12:58

Ta có: \(p^2-2q^2=1\)

Do 1 là số lẻ nên \(2q^2\) chẵn và \(p\) lẻ  

\(\Rightarrow p^2-1=2q^2\)

\(\Leftrightarrow\left(p-1\right)\left(p+1\right)=2q^2\)

Mà \(p\) lẻ nên \(p+1,p-1\) đều là chẵn 

\(\Rightarrow\left(q-1\right)\left(q+1\right)\) ⋮ 4

\(\Leftrightarrow q^2\) ⋮ 2 \(\Rightarrow q\) ⋮ 2 \(\Rightarrow q=2\)

\(\Rightarrow p^2=2\cdot2^2+1=9\Rightarrow q=3\)

Vậy: (q;p) là (2;3)

Nguyễn Minh Trang
7 tháng 8 2023 lúc 13:06

⇔ @Phong cho mình hỏi đây là gì ạ

trần thành đạt
Xem chi tiết
KAl(SO4)2·12H2O
3 tháng 11 2017 lúc 20:08

Trường hợp p = 2 thì 2^p + p^2 = 8 là hợp số. 
Trường hợp p = 3 thì 2^p + p^2 = 17 là số nguyên tố. 
Trường hợp p > 3. Khi đó p không chia hết cho 3 và p là số lẻ. Suy ra p chia cho 3 hoặc dư 1 hoặc dư 2, do đó p^2 - 1 = (p - 1)(p + 1) chia hết cho 3. Lại vì p lẻ nên 2^p + 1 chia hết cho 3. Thành thử (2^p + 1) + (p^2 - 1) = 2^p + p^2 chia hết cho 3; suy ra 2^p + p^2 ắt hẳn là hợp số. 
Vậy p = 3. 

trần thành đạt
3 tháng 11 2017 lúc 20:12

p và q bạn nả

Vũ Trí Hiếu
Xem chi tiết
Lê Hải Anh
Xem chi tiết
Sana Kashimura
7 tháng 4 2019 lúc 9:51

p2-2q2=1

=>p2=2q+1(1)

Vì p2=2q+1 =>p là số lẻ=> p=2k+1=>p2=4k2+4k+1(2)

Từ 1 và 2 => 4k2+4k+1=2q+1

=>2(2k2+2k)=2q

=>2k2+2k=q=> q là số chẵn Mà q là số nguyên tố => q=2

Thay q = 2 vào đề bài => p=3

Messi239
24 tháng 6 2023 lúc 17:05

p2-2q2=1

=>p2=2q^2+1(1)

Vì p2=2q^2+1 =>p là số lẻ=> p=2k+1=>p2=4k2+4k+1(2)

Từ 1 và 2 => 4k2+4k+1=2q+1

=>2(2k2+2k)=2q

=>2k2+2k=q=> q là số chẵn. Mà q là số nguyên tố => q=2

Thay q = 2 vào đề bài => p=3

ĐTM K36
1 tháng 5 2024 lúc 23:14

p2-2q2=1
<=> p2=2q2+1=> p lẻ

Ta có 2 trường hợp p=3 hoặc p khác 3
Với p khác 3=> p^2 chia 3 dư 1
=>2q2 chia hết cho 3=> q=3=>p2=19 (vô lý)

Với p=3=>q=2 (TM)
Vậy (p;q)=(3;2)

AEri Sone
Xem chi tiết
Yuzu
3 tháng 10 2019 lúc 20:05

\(y=\sqrt{x^2-2px+2p^2}+\sqrt{x^2-2qx+2q^2}\\ =\sqrt{\left(x-p\right)^2+p^2}+\sqrt{\left(x-q\right)^2+q^2}\left(1\right)\)

Ta thấy

\(\left\{{}\begin{matrix}\sqrt{\left(x-p\right)^2}\ge0\\\sqrt{\left(x-q\right)^2}\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{\left(x-p\right)^2+p^2}\ge\sqrt{p^2}=\left|p\right|=0\\\sqrt{\left(x-q\right)^2+q^2}\ge\sqrt{q^2}=\left|q\right|=0\end{matrix}\right.\\ \Rightarrow Min\left(1\right)0khi\left\{{}\begin{matrix}x=p=0\\x=q=0\end{matrix}\right.\Leftrightarrow x=p=q=0\)

P/s: Làm hơi tắt nên có mấy chỗ chưa logic lắm '-'

Nguyễn Việt Lâm
3 tháng 10 2019 lúc 23:25

\(y=\sqrt{\left(p-x\right)^2+p^2}+\sqrt{\left(x-q\right)^2+q^2}\ge\sqrt{\left(p-x+x-q\right)^2+\left(p+q\right)^2}\)

\(y\ge\sqrt{\left(p-q\right)^2+\left(p+q\right)^2}=\sqrt{2\left(p^2+q^2\right)}\)

Dấu "=" xảy ra khi \(x=\frac{p+q}{2}\)