Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Unknow
Xem chi tiết
Nguyễn Quỳnh Chi
Xem chi tiết
Lê An Thi
8 tháng 12 2021 lúc 18:15
Xin lỗi nha mik cũng chịu tự nhiên lướt ngang qua lại thấy 😅
Khách vãng lai đã xóa
Nguyễn Gia Bảo
8 tháng 12 2021 lúc 20:27

5676538564875x787866688089=bao nhieu mn oi

Khách vãng lai đã xóa
Vũ Trí Dũng
8 tháng 12 2021 lúc 21:54

lớp mấy thế mà khó v tui lớp 5

Khách vãng lai đã xóa
Le Dinh Quan
Xem chi tiết
Đặng Anh Thư
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 3 2021 lúc 9:57

Xét bộ gồm 2016 số: \(2^1;2^2;...;2^{2016}\)

Do 2017 nguyên tố đồng thời \(2^k\) là lũy thừa của 1 số nguyên tố khác 2017 nên \(2^k\) ko chia hết 2017 với mọi k 

Do đó tất cả các số trong bộ số nói trên đều ko chia hết 2017

- Nếu các số trong dãy trên chia 2017 có số dư đôi một khác nhau \(\Rightarrow\) có 2016 số dư \(\Rightarrow\) có đúng 1 số chia 2017 dư 1, giả sử đó là \(2^n\) thì \(2^n-1⋮2017\)

- Nếu tồn tại 2 số trong 2016 số trên có cùng số dư khi chia 2017 là \(2^i\) và \(2^j\) với \(1\le i< j\le2016\Rightarrow1\le j-i< 2016\)

\(\Rightarrow2^j-2^i⋮2017\)

\(\Rightarrow2^i\left(2^{j-i}-1\right)⋮2017\)

\(\Rightarrow2^{j-i}-1⋮2017\) (do \(2^i\) ko chia hết 2017)

\(\Rightarrow n=j-i\) thỏa mãn yêu cầu

BiBo MoMo
Xem chi tiết
Kiệt Nguyễn
12 tháng 11 2019 lúc 18:15

Giả sử tồn tại cặp số nguyên (x; y) sao cho \(x^2-2018=y^2\)

\(\Rightarrow x^2-y^2=2018\)

\(\Leftrightarrow\left(x+y\right)\left(x-y\right)=2018\)

Dễ c/m: x  và y phải cùng chẵn hoặc cùng lẻ (Vì nếu 1 trong 2 số x,y lẻ thì tích (x=y)(x-y) lẻ, vô lí)

Lúc đó \(\hept{\begin{cases}x+y⋮2\\x-y⋮2\end{cases}}\)

\(\Rightarrow\left(x-y\right)\left(x+y\right)⋮4\)

Mà 2018 không chia hết cho 4 nên điều g/s là sai

Vậy không tồn tại cặp số nguyên x,y thoả mãn \(x^2-2018=y^2\)(đpcm)

Khách vãng lai đã xóa
Xyz OLM
12 tháng 11 2019 lúc 18:25

Ta có : x2 - 2018 = y2

=> x2 - y2 = 2018

=> (x + y)(x - y) = 2018 

Nếu x ; y \(\inℤ\)ta có : 2018 = 1.2018 = 2.1009 = (-1).(-2018) = (-2).(-1009)

Lập bảng xét 8 trường hợp ta có : 

x - y1201821009-1-2018-1009-2
x + y2018110092-2018-1-2-1009
x2019/22009/21011/21011/2-2019/2-2019/2-1011/2-1011/2
y2017/2-2007/21007/2-1007/2-2017/22017/2-1007/21007/2

=> Không tồn tại cặp số nguyên x,y thỏa mãn

Khách vãng lai đã xóa
lili
12 tháng 11 2019 lúc 18:28

Mình có 1 cách làm khác ngắn hơn nè, chỉ mất 3 dòng thôi

Do 1 số chính phương chia 4 dư 0 hoặc 1 (tính chất)

Nếu x^2 chia 4 dư 0 (x chẵn). Mà 2018 chia 4 dư 2

=> x^2-2018 chia 4 dư 2 => y^2 chia 4 dư 2=> Vô lí=> Loại

Nếu x^2 chia 4 dư 1 (x lẻ). Mà 2018 chia 4 dư 2

=> x^2-2018 chia 4 dư 3 => y^2 chia 4 dư 3=> Vô lí=> Loại

Thế nên không tồn tại x,y nguyên => đpcm

Khách vãng lai đã xóa
vu minh hang
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
? 12Yo.Sh00t3r
26 tháng 6 2023 lúc 20:19

cái này toán 10 hay s v :(

Lê Thảo Nguyên
26 tháng 6 2023 lúc 20:37

không phải là toán lớp 5 ạ

 

Lê Thảo Nguyên
26 tháng 6 2023 lúc 20:37

ai bt thì giúp e với ạ

 

lê trần anh khôi
Xem chi tiết
KAl(SO4)2·12H2O
29 tháng 10 2017 lúc 10:59

gia su ton 2 so thoa man dk tren

goi 2 so do la a.b

goi c uoc chung >9 

ta co a= ck

         b= cx

khi do k va x phai  la 2 so tu nhien lien tiep

gia su x= k +1

khi do b= ck+c

ma c≥10≥10

suy ra b-a>10 

.........................................trai voi gia thiet

minh tri nguyen
Xem chi tiết
Ng.T
7 tháng 5 2023 lúc 14:00

Áp dụng tính chất sau \(\left(a-1\right)\left(a+1\right)=a^2-1\)(\(a\in Z\)) ta được:

\(\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left(n+2\right).\left[\left(n+1\right)\left(n+3\right)\right]=\left(n+2\right).\left[\left(n+2\right)^2-1\right]\)

Do \(n+2\) và \(\left(n+2\right)^2-1\) là hai số nguyên tố cùng nhau nên nếu \(\left(n+1\right)\left(n+2\right)\left(n+3\right)\) là số chính phương thì \(n+2\) và \(\left(n+2\right)^2-1\) cũng là các số chính phương

Do n là các số nguyên dương nên \(n+2\ge2\)

Với \(n+2\ge2\Rightarrow\left(n+2\right)^2-1\) không là số chính phương

\(\Rightarrow\left(n+1\right)\left(n+2\right)\left(n+3\right)\) không là số chính phương