Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Tuyết Nhi
Xem chi tiết
Thu Trang
Xem chi tiết
TFBOYS in my heart
Xem chi tiết
Yuu Shinn
29 tháng 11 2015 lúc 11:12

1. ƯCLN(a, b) = 8 suy ra a và b chia hết cho 8

mà có thêm một cách tìm a và b là a + b = 32 suy ra ta phải tìm các bội của 8 mà là ước của 32

có hai số là: 8 và 32

=> nếu a = 8 và b = 32 - 8 = 24 thì a + b = 32(chọn)

nếu a = 32 và b = 0 thì hai số nàu có ƯCLN là 32(loại)

suy ra a = 24 và b = 8

2. bạn làm tương tự

tick mik nha

 

 

Ngọc Linh
Xem chi tiết
Unruly Kid
30 tháng 11 2017 lúc 15:32

Áp dụng BĐT Cauchy, ta có:

\(A\ge2\sqrt{\dfrac{a^2}{a-1}.\dfrac{b^2}{b-1}}=2.\dfrac{a}{\sqrt{a-1}}.\dfrac{b}{\sqrt{b-1}}\)

\(A\ge2.\dfrac{a}{\sqrt{1\left(a-1\right)}}.\dfrac{b}{\sqrt{1\left(b-1\right)}}\)

\(A\ge2.\dfrac{a}{\dfrac{1+a-1}{2}}.\dfrac{b}{\dfrac{1+b-1}{2}}=2.\dfrac{a}{\dfrac{a}{2}}.\dfrac{b}{\dfrac{b}{2}}=2.\dfrac{2a}{a}.\dfrac{2b}{b}=2.2.2=8\)

Dấu ''='' xảy ra khi a=b=2

A đến Z
Xem chi tiết
Nguyễn Minh Quân
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 8 2023 lúc 21:04

A={0;1;2;3}

B={0;1;-1}

A hợp B={0;1;2;3;-1}

=>B

Tiểu Sam Sam
Xem chi tiết
Nguyễn Kiều My
Xem chi tiết
Trần Thanh Phương
Xem chi tiết
tthnew
5 tháng 7 2019 lúc 18:02

Bài 5:Dự đoán dấu = xảy ra khi a = 2; b=3;c=4. Ta có hướng giải như sau:

\(A=\left(\frac{3}{4}a+\frac{3}{a}\right)+\left(\frac{b}{2}+\frac{9}{2b}\right)+\left(\frac{1}{4}c+\frac{4}{c}\right)+\frac{a}{4}+\frac{b}{2}+\frac{3}{4}c\)

Áp dụng BĐT AM-GM,ta được:

\(A\ge2\sqrt{\frac{3}{4}a.\frac{3}{a}}+2\sqrt{\frac{b}{2}.\frac{9}{2b}}+2\sqrt{\frac{1}{4}c.\frac{4}{c}}+\frac{1}{4}\left(a+2b+3c\right)\)

\(\ge3+3+2+\frac{1}{4}.20=13\)

Dấu "=" xảy ra khi a = 2; b=3;c=4

VẬy A min = 13 khi a = 2; b=3;c=4

Akai Haruma
5 tháng 7 2019 lúc 22:23

Bài 1: Bạn xem lại đề, với điều kiện như đã cho thì A có max chứ không có min

Bài 2:
\(A=(a+1)^2+\left(\frac{a^2}{a+1}+2\right)^2=(a+1)^2+\left(\frac{a^2+2a+2}{a+1}\right)^2\)

\(=(a+1)^2+\left(\frac{(a+1)^2+1}{a+1}\right)^2=(a+1)^2+\left(a+1+\frac{1}{a+1}\right)^2\)

\(=t^2+(t+\frac{1}{t})^2=2t^2+\frac{1}{t^2}+2\) (đặt \(t=a+1)\)

Áp dụng BĐT AM-GM:

\(2t^2+\frac{1}{t^2}\geq 2\sqrt{2}\Rightarrow A\geq 2\sqrt{2}+2\)

Vậy $A_{\min}=2\sqrt{2}+2$. Dấu "=" xảy ra khi \(a=\pm \frac{1}{\sqrt[4]{2}}-1\)

Akai Haruma
5 tháng 7 2019 lúc 22:25

Bài 3:

Áp dụng BĐT AM-GM cho các số dương ta có:

\(A=a+\frac{2}{a^2}=\frac{a}{2}+\frac{a}{2}+\frac{2}{a^2}\geq 3\sqrt[3]{\frac{a}{2}.\frac{a}{2}.\frac{2}{a^2}}=3\sqrt[3]{\frac{1}{2}}\)

Vậy \(A_{\min}=3\sqrt[3]{\frac{1}{2}}\) khi \(a=\sqrt[3]{4}\)