m-\(\dfrac{1}{12}\)+\(\dfrac{1}{23}\)+....+\(\dfrac{1}{49}\).\(\dfrac{1}{50}\)
tìm x
\([\dfrac{6:\dfrac{3}{5}-1\dfrac{1}{16}.\dfrac{16}{7}}{4\dfrac{1}{5}-\dfrac{10}{11}+5\dfrac{2}{11}}-\dfrac{\left(\dfrac{3}{20}+\dfrac{1}{2}-\dfrac{1}{5}\right).\dfrac{12}{49}}{3\dfrac{1}{3}+\dfrac{2}{9}}].x=2\dfrac{23}{96}\)
Hãy tính \(\dfrac{C}{D}\). Biết C= \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{48}+\dfrac{1}{49}+\dfrac{1}{50}\) và D= \(\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{48}{2}+\dfrac{49}{1}\)
=> D + 49 = (1/49 + 1) + (2/48 + 1) +... (49/1 + 1)
= 50/1 + 50/2 + ... + 50/49
= 50(1/2+1/3+...+1/49) + 50
=> D = 50(1/2 + 1/3 +... + 1/49) + 1
= 50(1/2 + 1/3 +... + 1/49 + 1/50)
=> C/D = 1/50
tìm x biết
\(\left(\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\right):x=\dfrac{99}{50}-\dfrac{97}{49}+...+\dfrac{7}{4}-\dfrac{5}{3}+\dfrac{3}{2}-1\)
Cho \(A=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50};B=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{48}{2}+\dfrac{49}{1}\)
Tính giá trị của \(\dfrac{A}{B}\)
\(B=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{48}{2}+\dfrac{49}{1}\)
\(B=\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+\left(\dfrac{3}{47}+1\right)+...+\left(\dfrac{48}{2}+1\right)+\dfrac{49}{1}\)
\(B=\left(\dfrac{50}{49}+\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}\right)+1\)
\(B=\dfrac{50}{50}+\dfrac{50}{49}+\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}\)
\(B=50\left(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+...+\dfrac{1}{2}\right)\)
\(\Rightarrow\dfrac{A}{B}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{49}+\dfrac{1}{50}}{50\left(\dfrac{1}{50}+\dfrac{1}{49}+\dfrac{1}{48}+...+\dfrac{1}{2}\right)}=\dfrac{1}{50}\)
Chứng minh rằng : \(\dfrac{1}{26}+\dfrac{1}{27}+\dfrac{1}{28}+...+\dfrac{1}{50}=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}+\dfrac{1}{50}\)
Ta có :
Vế phải =1 - 1/2 + 1/3 - 1/4 + ... + 1/49 - 1/50
= (1+ 1/3 + 1/5 + ... + 1/49) - (1/2 + 1/4 + ... +1/50)
<=> (1 + 1/2 + 1/3 + 1/4 + ... + 1/49+1/50)- 2(1/2 +1/4 +...+1/50)
=(1+1/2 +1/3 +1/4...+ 1/49+1/50) - (1+1/2 +...+1/25)
=1/26 + 1/27 +1/28 +...+1/50 (đpcm)
Cho S = \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{48}+\dfrac{1}{49}+\dfrac{1}{50}\)và P = \(\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{48}{2}+\dfrac{49}{1}\). Tính \(\dfrac{S}{P}\)
\(P=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{48}{2}+\dfrac{49}{1}\)
\(P=\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+\left(\dfrac{3}{47}+1\right)+...+\left(\dfrac{48}{2}+1\right)+1\)
\(P=\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}+\dfrac{50}{50}\)
\(P=50\left(\dfrac{1}{2}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)\)
\(\dfrac{S}{P}=\dfrac{\dfrac{1}{2}+...+\dfrac{1}{49}+\dfrac{1}{50}}{50\left(\dfrac{1}{2}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)}=\dfrac{1}{50}\)
1) giải pt :
a) \(\dfrac{7x+10}{x+1}\left(x^2-x-2\right)-\dfrac{7x+10}{x+1}\left(2x^2-3x-5\right)=0\)
b) \(\dfrac{13}{2x^2+x-21}+\dfrac{1}{2x+7}+\dfrac{6}{9-x^2}=0\)
c) \(\dfrac{x-49}{50}+\dfrac{x-50}{49}=\dfrac{49}{x-50}+\dfrac{50}{x-49}\)
d) \(\dfrac{1+\dfrac{x}{x+3}}{1-\dfrac{x}{x+3}}=3\)
a: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\cdot\left(x^2-2x-3\right)=0\)
=>(7x+10)(x-3)=0
=>x=3 hoặc x=-10/7
b: \(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow13\left(x+3\right)+x^2-9-12x-42=0\)
\(\Leftrightarrow x^2-12x-51+13x+39=0\)
\(\Leftrightarrow x^2+x-12=0\)
=>(x+4)(x-3)=0
=>x=-4
Cho \(S=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+................+\dfrac{1}{48}+\dfrac{1}{49}+\dfrac{1}{50}\) và \(P=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+..........+\dfrac{48}{2}+\dfrac{49}{1}\)
Tính \(\dfrac{S}{P}\)
Help me!!!!!!!!!!!
Ta có: \(P=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{48}{2}+\dfrac{49}{1}\)
\(P=\left(1+\dfrac{1}{49}\right)+\left(1+\dfrac{2}{48}\right)+\left(1+\dfrac{3}{47}\right)+...+\left(1+\dfrac{48}{2}\right)+1\)
\(P=\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}+\dfrac{50}{50}\)
\(P=50\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)
\(\Rightarrow\)\(\dfrac{S}{P}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}}{50\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)}\)\(=\dfrac{1}{50}\)
Chứng minh rằng :
\(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{49\cdot50}=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)
\(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{49\cdot50}=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\\ =\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\\ =\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\\ =1+\dfrac{1}{2}+...+\dfrac{1}{50}-1-\dfrac{1}{2}-\dfrac{1}{3}-...-\dfrac{1}{25}\\ =\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)