tính nhanh biểu thức sau : Q(x)=1/x^21+1/x^2+4x+3+1/x^2+8x+15+1/x^2+12x+35
\(\frac{1}{x^2+4x+3}+\frac{1}{x^2+8x+15}+\frac{1}{x^2+12x+35}=\frac{3}{16}\)
ĐKXĐ: \(x\ne-1;\) \(x\ne-3;\)\(x\ne-5;\)\(x\ne-7\)
\(\frac{1}{x^2+4x+3}+\frac{1}{x^2+8x+15}+\frac{1}{x^2+12x+35}=\frac{3}{16}\)
\(\Leftrightarrow\)\(\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}=\frac{3}{16}\)
\(\Leftrightarrow\)\(\frac{1}{2}\left(\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+7}\right)=\frac{3}{16}\)
\(\Leftrightarrow\)\(\frac{1}{x+1}-\frac{1}{x+7}=\frac{3}{8}\)
\(\Leftrightarrow\)\(\frac{6}{\left(x+1\right)\left(x+7\right)}=\frac{3}{8}\)
\(\Rightarrow\)\(3\left(x+1\right)\left(x+7\right)=48\)
\(\Leftrightarrow\)\(x^2+8x+7=16\)
\(\Leftrightarrow\)\(x^2+8x-9=0\)
\(\Leftrightarrow\)\(\left(x+1\right)\left(x-9\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-1\left(KTMĐKXĐ\right)\\x=9\left(TMĐKXĐ\right)\end{cases}}\)
Vậy...
\(\frac{1}{x^2+4x+3}+\frac{1}{x^2+8x+15}+\frac{1}{x^2+12x+35}=\frac{3}{16}\)
\(\Leftrightarrow\frac{1}{x^2+x+3x+3}+\frac{1}{x^2+3x+5x+15}+\frac{1}{x^2+5x+7x+35}=\frac{3}{16}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}=\frac{3}{16}\)
\(\Leftrightarrow\frac{\left(x+5\right)\left(x+7\right)}{\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)}+\frac{\left(x+1\right)\left(x+7\right)}{\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)}+\frac{\left(x+1\right)\left(x+3\right)}{\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)}\)
\(=\frac{3\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)}{\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)}\)
Mẫu của mỗi phân thức bằng nhau nên => tử của mỗi phân thức cũng phải bằng nhau
=> Đến đây thì dễ rồi, bạn giải ra tìm x
giai phuong trinh\(\dfrac{1}{x^2+4x+3}+\dfrac{1}{x^2+8x+15}+\dfrac{1}{x^2+12x+35}+\dfrac{1}{x^2+16x+63}=\dfrac{1}{5}\)
b) \(\left(x-3\right)^2+3x-22=\sqrt{x^2-3x+7}\)
\(\Leftrightarrow x^2-6x+9+3x-22=\sqrt{x^2-3x+7}\)
\(\Leftrightarrow\left(x^2-3x+7\right)-\sqrt{x^2-3x+7}-20=0\)
Đặt \(\sqrt{x^2-3x+7}=t\left(t\ge0\right)\left(1\right)\)
\(\Rightarrow t^2-t-20=0\)
\(\Rightarrow x_1=5\left(TM\right);x_2=-4\left(KTM\right)\)
Thay t=5 vào (1), ta có :
\(\sqrt{x^2-3x+7}=5\)
\(\Leftrightarrow x^2-3x+7=25\)
\(\Leftrightarrow x^2-3x-18=0\)
\(\Rightarrow x_1=6;x_2=-3\)
vậy...
\(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+7\right)}+\dfrac{1}{\left(x+7\right)\left(x+9\right)}=\dfrac{1}{5}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+7}+\dfrac{1}{x+7}-\dfrac{1}{x+9}=\dfrac{2}{5}\)
=>\(\dfrac{x+9-x-1}{\left(x+9\right)\left(x+1\right)}=\dfrac{2}{5}\)
\(\Leftrightarrow2\left(x^2+10x+9\right)=5\cdot8=40\)
=>x^2+10x+9=20
=>x^2+10x-11=0
=>(x+10)(x-1)=0
=>x=1 hoặc x=-10
Giải phương trình:
\(\frac{1}{x^2+4x+3}+\frac{1}{x^2+8x+15}+\frac{1}{x^2+12x+35}=\frac{1}{3}\)
đk: ... \(\Rightarrow x\ne-1;-3;-5;-7\)
\(pt\Leftrightarrow\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}=\frac{1}{3}\)
\(\Leftrightarrow\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{2}{\left(x+3\right)\left(x+5\right)}+\frac{2}{\left(x+5\right)\left(x+7\right)}=\frac{2}{3}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+7}=\frac{2}{3}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+7}=\frac{2}{3}\)
\(\Leftrightarrow3\left(x+7-x-1\right)=2\left(x+1\right)\left(x+7\right)\)
\(\Leftrightarrow2x^2+16x+14=18\)
\(\Leftrightarrow2x^2+16x-4=0\)
\(\Delta'=64+8=72>0\)
phương trình có 2 nghiệm phân biệt:
\(x_{1,2}=\frac{-b'\pm\sqrt{\Delta}}{a}=\frac{-8\pm\sqrt{72}}{2}=-4\pm3\sqrt{2}\) (tm)
Vậy...
giúp mik
tìm x
a 2 (x^3 - 1 ) - 2x^2 ( x +2x^4 ) + ( 4x^5 +4 ) x =6
b (2x)^2 (4x - 2 ) - ( x^3 -8x^3 )=15
chứng tỏ giá trị của biểu thức sau ko phụ thuộc vào giá trị của biến
a P = x ( 2x + 1 ) - x^2 ( x + 2 ) + x^3 - x +3
b Q = x (2x^2 -4x +8 ) +12x^2 (1/3 _1/6x ) -8x +9
\(a,2\left(x^3-1\right)-2x^2\left(x+2x^4\right)+x\left(4x^5+4\right)=6\\ \Leftrightarrow2x^3-2-2x^3-4x^6+4x^6+4x-6=0\\ \Leftrightarrow4x-8=0\\ \Leftrightarrow x=2\\ b,\left(2x\right)^2\left(4x-2\right)-\left(x^3-8x^3\right)=15\\ \Leftrightarrow4x^2\left(4x-2\right)+7x^3-15=0\\ \Leftrightarrow16x^3-8x^2+7x^3-15=0\\ \Leftrightarrow23x^3-8x^2-15=0\\ \Leftrightarrow23x^3-23x^2+15x^2-15x+15x-15=0\\ \Leftrightarrow\left(x-1\right)\left(23x^2+15x-15\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x\in\varnothing\left(23x^2+15x-15>0\right)\end{matrix}\right.\)
Bài 1:
a: Ta có: \(2\left(x^3-1\right)-2x^2\left(2x^4+x\right)+x\left(4x^5+4\right)=6\)
\(\Leftrightarrow2x^3-2-4x^6-2x^3+4x^6+4x=6\)
\(\Leftrightarrow4x=8\)
hay x=2
b: Ta có: \(\left(2x\right)^2\cdot\left(4x-2\right)-\left(x^3-8x^3\right)=15\)
\(\Leftrightarrow4x^2\left(4x-2\right)-x^3+8x^3=15\)
\(\Leftrightarrow16x^3-8x^2+7x^3=15\)
\(\Leftrightarrow23x^3-8x^2-15=0\)
\(\Leftrightarrow23x^3-23x^2+15x^2-15=0\)
\(\Leftrightarrow23x^2\left(x-1\right)+15\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(23X^2+15x+15\right)=0\)
\(\Leftrightarrow x-1=0\)
hay x=1
Bài 2:
a: Ta có: \(P=x\left(2x+1\right)-x^2\left(x+2\right)+x^3-x+3\)
\(=2x^2+x-x^3-2x^2+x^3-x+3\)
=3
b: ta có: \(Q=x\left(2x^2-4x+8\right)+12x^2\left(\dfrac{1}{3}-\dfrac{1}{6}x\right)-8x+9\)
\(=2x^3-4x^2+8x+4x^2-2x^3-8x+9\)
=9
Tìm x để biểu thức sau có nghĩa:
c) \(\dfrac{1}{\sqrt{4x^2-12x+9}}\)
d) \(\dfrac{1}{\sqrt{x^2-x+1}}\)
e) \(\dfrac{1}{\sqrt{x^2-8x+15}}\)
f) \(\dfrac{1}{\sqrt{3x^2-7x+20}}\)
1)ĐK:`4x^2-12x+9>0`
`<=>(2n-3)^2>0`
`<=>2n-3 ne 0`
`<=>n ne 3/2`
`d)x^2-x+1`
`=(x-1/2)^2+3/4>0AAx`
`=>` bt xd `AAx in RR`
e)ĐK:`x^2-8x+15>0`
`<=>x^2-3x-5x+15>0`
`<=>x(x-3)-5(x-3)>0`
`<=>(x-3)(x-5)>0`
`TH1:` \(\begin{cases}x-3>0\\x-5>0\\\end{cases}\)
`<=>` \(\begin{cases}x>3\\x>5\\\end{cases}\)
`<=>x>5`
`TH2:` \(\begin{cases}x-3<0\\x-5<0\\\end{cases}\)
`<=>` \(\begin{cases}x<3\\x<5\\\end{cases}\)
`<=>x<3`
f)ĐK:`3x^2-7x+20>0`
`<=>x^2-2x+1+2x^2-5x+19>0`
`<=>(x-1)^2+2(x-5/2)^2+13/2>0` luôn đúng
c) Để biểu thức \(\dfrac{1}{\sqrt{4x^2-12x+9}}\) có nghĩa thì \(4x^2-12x+9>0\)
\(\Leftrightarrow\left(2x-3\right)^2>0\)
\(\Leftrightarrow2x-3\ne0\)
\(\Leftrightarrow2x\ne3\)
hay \(x\ne\dfrac{3}{2}\)
d) Để biểu thức \(\dfrac{1}{\sqrt{x^2-x+1}}\) có nghĩa thì \(x^2-x+1>0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}>0\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)(luôn đúng)
e) Để biểu thức \(\dfrac{1}{\sqrt{x^2-8x+15}}\) có nghĩa thì \(x^2-8x+15>0\)
\(\Leftrightarrow\left(x-4\right)^2>1\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4>1\\x-4< -1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>5\\x< 3\end{matrix}\right.\)
f) Để biểu thức \(\dfrac{1}{\sqrt{3x^2-7x+20}}\) có nghĩa thì \(3x^2-7x+20>0\)
\(\Leftrightarrow x^2-\dfrac{7}{3}x+\dfrac{20}{3}>0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{7}{6}+\dfrac{49}{36}+\dfrac{191}{36}>0\)
\(\Leftrightarrow\left(x-\dfrac{7}{6}\right)^2+\dfrac{191}{36}>0\)(luôn đúng)
Giải phương trình: \(\dfrac{1}{x^2+4x+3}+\dfrac{1}{x^2+8x+15}+\dfrac{1}{x^2+12x+35}+\dfrac{1}{x^2+16x+63}=\dfrac{1}{5}\)
\(\Leftrightarrow\dfrac{2}{\left(x+1\right)\left(x+3\right)}+\dfrac{2}{\left(x+3\right)\left(x+5\right)}+\dfrac{2}{\left(x+5\right)\left(x+7\right)}+\dfrac{2}{\left(x+7\right)\left(x+9\right)}=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+7}+\dfrac{1}{x+7}-\dfrac{1}{x+9}=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+9}=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{x+9-x-1}{\left(x+1\right)\left(x+9\right)}=\dfrac{2}{5}\)
=>2(x+1)(x+9)=5*8=40
=>x^2+9x+9=20
=>x^2+9x-11=0
hay \(x=\dfrac{-9\pm5\sqrt{5}}{2}\)
=>x^2+9x
Giải phương trình:
\(\frac{1}{x^2+4x+3}+\frac{1}{x^2+8x+15}+\frac{1}{x^2+12x+35}+\frac{1}{x^2+16x +63}=\frac{1}{5}\)
ĐK:\(x\ne-1;-3;-5;-7;-9\)
\(pt\Leftrightarrow\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{2}{\left(x+3\right)\left(x+5\right)}+\frac{2}{\left(x+5\right)\left(x+7\right)}+\frac{2}{\left(x+7\right)\left(x+9\right)}=\frac{2}{5}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-...-\frac{1}{x+9}=\frac{2}{5}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+9}=\frac{2}{5}\)\(\Leftrightarrow\frac{8}{\left(x+1\right)\left(x+9\right)}=\frac{2}{5}\)
\(\Leftrightarrow2\left(x+1\right)\left(x+9\right)=40\)\(\Leftrightarrow x^2+10x-11=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+11=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=1\\x=-11\end{cases}}\) (thoả)
Vậy....
1 Viết các biểu thức sau dưới dạng tích: a) x^2+8x+16 b) x^2-12x+36 c) 4x-4x^2-1 d) x^3-3x^2+3x-1
\(a,=\left(x+4\right)^2\\ b,=\left(x-6\right)^2\\ c,=-\left(4x^2-4x+1\right)=-\left(2x-1\right)^2\\ d,=\left(x-1\right)^3\)
Giải phương trình:
(1/x^2+4x+3)+(1/x^2+8x+15)+1/x^2+12x+35)=1/9
https://olm.vn/hoi-dap/detail/64195114200.html
Bn dưới trl r!!
Chúc bn hc tốt!!