tìm tất cả giá trị của m để `x^2 -4(m-1)x+2m-1=0` có 2 nghiệm trái dấu
Tìm tất cả các giá trị dương của tham số m để phương trình x2+2(m+1)x-2m-3=0 có hai nghiệm trái dấu x1;x2 thỏa mãn \(\sqrt{2x_2-1}=x_1+22\)
Cho pt : x2-(2m+1)x+2m-4=0 . Tìm các giá trị của m để pt có 2 nghiệm trái dấu, nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương
Cho phương trình: x^2 - 2mx + 2(m - 2) = 0. Tìm m để phương trình có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương
đen ta'=m^2-2m+2
đen ta'=(m-1)^2+1
suy ra phương trình luôn có 2 nghiệm phân biệt
để phương trình có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương
khi và chỉ khi P<0 và S#0
suy ra 2(m-2)<0 và 2m#0
suy ra m<2 và m#0
Tìm tất cả các giá trị của tham số m để phương trình \(-x^2+mx+4-m^2=0\) có hai nghiệm trái dấu
Ta có: \(-x^2+mx+4-m^2=0\)
\(\Leftrightarrow x^2-mx+m^2-4=0\)
Để phương trình có hai nghiệm trái dấu thì (m-2)(m+2)<0
hay -2<m<2
Tìm tất cả các giá trị của tham số m để pt x^2-(m-1)*x+4*m^2-m=0 có hai nghiệm trái dấu X1, X2 thỏa mãn điều kiện
2*(X1+X2)+3*x1*x2<2
Tìm tất cả các giá trị của tham số m để phương trình m + 3 9 x + 2 m - 1 3 x + m + 1 = 0 có hai nghiệm trái dấu.
A. - 3 < m < 1
B. - 3 < m < - 3 4
C. - 1 < m < - 3 4
D. m ≥ - 3
Tìm tất cả các giá trị của tham số m để phương trình ( m + 3 ) 16 x + ( 2 m - 1 ) 4 x + m + 1 = 0 có hai nghiệm trái dấu
A. - 3 < m < - 1
B. - 1 < m < - 3 4
C. - 1 < m < 0
D. m ≥ - 3
Tìm tất cả các giá trị của tham số m để phương trình ( m + 3 ) 16 x + ( 2 m - 1 ) 4 x + m + 1 = 0 có hai nghiệm trái dấu
cho pt x²-(2m-1)x+m-1=0 . a Chứng minh rằng pt luôn có 2 nghiệm phân biệt với mọi giá trị của m . b Tìm m để pt có 2 nghiệm trái dấu . c Tìm m để pt có 2 nghiệm cùng dấu
a: \(\text{Δ}=\left(2m-1\right)^2-4\left(m-1\right)\)
\(=4m^2-4m+1-4m+4=4m^2-8m+5\)
\(=\left(4m^2-8m+4\right)+5=4\left(m-1\right)^2+5>0\)
=>Phương trình luôn có hai nghiệm phân biệt
b: Để phương trình có hai nghiệm trái dấu thì m-1<0
hay m<1
tìm tất cả giá trị của m để pt x^4-2(m-1)x^2+2m-1=0 vô nghiệm
a) x4 + (1 - 2m)x2 + m2 - 1 = 0 (1)
Đặt t=x2 ta dc PT: t2+(1-2m)t+m2-1=0(2)
Để PT (1) thì PT(2) vô nghiệm:
Để PT(2) vô nghiệm thì:
<=>5-4m<0
<=>m>5/4