Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Phước Nghĩa
Xem chi tiết
ILoveMath
22 tháng 11 2021 lúc 11:28

\(A=2+2^2+2^3+...+2^{100}\)

\(\Rightarrow A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)

\(\Rightarrow A=6+2^3\left(2+2^2\right)+...+2^{99}\left(2+2^2\right)\)

\(\Rightarrow A=6+2^3.6+...+2^{99}.6\)

\(\Rightarrow A=6\left(1+2^3+...+2^{99}\right)⋮6\)

phạm thành đạt
Xem chi tiết
Thịnh Gia Vân
6 tháng 1 2021 lúc 19:24

Ta có: A=2+22+23+24+...+299+2100

-> A=2(1+2)+23(1+2)+...+299(1+2)

->A=2.3+23.3+...+299.3

->A=3(2+23+...+299)\(⋮\)3

=> Đpcm

Hồng Anh Vi
Xem chi tiết
Akai Haruma
16 tháng 10 2021 lúc 22:52

Lời giải:
$A=1+2^2+2^4+...+2^{100}$

$=(1+2^2+2^4)+(2^6+2^8+2^{10})+....+(2^{96}+2^{98}+2^{100})$

$=(1+2^2+2^4)+2^6(1+2^2+2^4)+....+2^{96}(1+2^2+2^4)$

$=(1+2^2+2^4)(1+2^6+...+2^{96})$

$=21(1+2^6+...+2^{96})\vdots 21$

Rosie
Xem chi tiết
Hà Vy
5 tháng 10 2021 lúc 18:28

A= (2+22)+(23+24)+...+(259+260)
A=2.(1+2)+23.(1+2)+...+259.(1+2)
A=2.3+23.3+...+259.3
A=3.(2+23+...+259)
Vì 3 chia hết cho 3 => 3.(2+23+...+259)  chia hết cho 3
=>A  chia hết cho 3
A= (2+22+23)+...+(258+259+260)
A=2.(1+2+22)+...+258.(1+2+22)
A=2.7+...+258.7
A=7.(2+...+258)
Vì 7  chia hết cho 7 =>7.(2+...+258)  chia hết cho 7

CHIA HẾT CHO 3 :

A= (2+22)+(23+24)+...+(259+260)

A=2.(1+2)+23.(1+2)+...+259.(1+2)

A=2.3+23.3+...+259.3

A=3.(2+23+...+259)

Vì 3 chia hết cho 3 => 3.(2+23+...+259) chia hết cho 3

=>A chia hết cho 3


 

Khách vãng lai đã xóa
Yen Nhi Nguyen Hai
4 tháng 11 2021 lúc 18:41

dcv

Trần Minh Quân
Xem chi tiết
Đoàn Đức Hà
9 tháng 11 2021 lúc 22:45

\(A=2+2^2+2^3+2^4+...+2^{100}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)

\(=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)

\(=6\left(1+2^2+...+2^{98}\right)\)chia hết cho \(6\).

Khách vãng lai đã xóa
Trang Lina
Xem chi tiết
Phạm Thị Minh Nguyệt
Xem chi tiết
Emma
19 tháng 3 2021 lúc 20:15

Ta có : 

\(A=2+2^2+2^3+2^4...2^{2010}\)\(^0\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(=2.3+2^3.3+....+2^{2009}.3\)

\(=3\left(2+2^3+....+2^{2009}\right)⋮3\)

Ta có :

\(2+2^2+2^3+2^4+....+2^{2010}\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(=2.7+2^4.7+....+2^{2008}.7\)

\(=7\left(2+2^4+....+2^{2008}\right)⋮7\)

Vậy \(2^1+2^2+2^3+2^4+...+2^{2010}⋮3\) và \(7\)

Khách vãng lai đã xóa
Lê Thị Thu Hương
Xem chi tiết
subjects
28 tháng 12 2022 lúc 10:41

loading...

Ngô Minh Khuê
Xem chi tiết
Nguyễn Hoàng Minh
21 tháng 12 2021 lúc 22:36

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\\ A=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\\ A=\left(2+2^2\right)\left(1+2^2+...+2^{98}\right)\\ A=6\left(1+2^2+...+2^{98}\right)⋮6\)