Lim x tới âm vô cùng √4x^2+x +2x-1
Tính giới hạn của lim tiến tới âm vô cùng (-x^3+x^2-x+1)
Tính Lim x--> âm vô cùng (√4x2+x +2x-1) Cái dấu căn bậc 2 tới x là dừng ạ(em có cách ra rồi ạ) còn lại là 2x-1. Cách làm là nhân liên hợp gì đó ạ
\(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{4x^2+x}+2x-1\right)\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{4x^2+x-\left(2x-1\right)^2}{\sqrt{4x^2+x}-2x+1}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{4x^2+x-4x^2+4x-1}{\sqrt{4x^2+x}-2x+1}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{5x-1}{-x\cdot\sqrt{4+\dfrac{1}{x}}-2x+1}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{5-\dfrac{1}{x}}{-\sqrt{4+\dfrac{1}{x}}-2+\dfrac{1}{x}}\)
\(=\dfrac{5-0}{-\sqrt{4+0}-2+0}=\dfrac{5}{-4}=-\dfrac{5}{4}\)
tìm lim (2x^2 -xsinx+1)/(x^2 -xcosx +2) (x tiến đến dương vô cùng)
lim (cos10x+xsin10x)/(x căn x +2) (x tiến đến âm vô cùng)
Lim x-> âm vô cùng (4 căn (x2 -3x+1) +2x+1 )
lim \(\left(2x-1+\sqrt{4x^2-x+5}\right)\)
x-> âm vô cubgf
Lm s để xem nội qui , bày t vs , t k rồi ib nt lq
pt <=> \(\frac{\left(2x-1\right)^2-4x^2+x-5}{2x-1-\sqrt{4x^2-x+5}}=0\)
mẫu khác 0 nên
\(-3x-4=0\)
\(x=\frac{-4}{3}\)
mình nghĩ vậy ahihi ^v^
1) lim \(\frac{-x^2+3x}{x^3-2x^2+x}\) (x->1)
2) lim \(\frac{\sqrt{1+2x}-\sqrt[3]{1+3x}}{x^2}\) (x->0)
3) lim \(\frac{x\sqrt[3]{x^3+1
}}{2-x\sqrt{1+4x^2}}\) (x-> âm vô cùng )
4) lim \(\frac{\cos^9x-1}{x}\) (x->0)
giúp mình với ạ
Lim x-- dương vô cùng: (4x^2 -3x+1)
\(\lim\limits_{x\rightarrow+\infty}\left(4x^2-3x+1\right)=\lim\limits_{x\rightarrow+\infty}x^2\left(4-\dfrac{3}{x}+\dfrac{1}{x^2}\right)\)
Do \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow+\infty}x^2=+\infty\\\lim\limits_{x\rightarrow+\infty}\left(4-\dfrac{3}{x}+\dfrac{1}{x^2}\right)=4>0\end{matrix}\right.\)
\(\Rightarrow\lim\limits_{x\rightarrow+\infty}x^2\left(4-\dfrac{3}{x}+\dfrac{1}{x^2}\right)=+\infty\)
lim x tiến tới vô cùng (\(\sqrt{x^2+x}\)-\(\sqrt[3]{x^3-x^2}\))
\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+x}-\sqrt[3]{x^3-x^2}\right)\)
\(=\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+x}-x+x-\sqrt[3]{x^3-x^2}\right)\)
\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{x}{\sqrt{x^2+x}+x}+\dfrac{x^2}{x^2+x.\sqrt[3]{x^3-x^2}+\sqrt[3]{\left(x^3-x^2\right)^2}}\right)\)
\(=\lim\limits_{x\rightarrow+\infty}\left(\dfrac{1}{\sqrt{1+\dfrac{1}{x}}+1}+\dfrac{1}{1+\sqrt[3]{1-\dfrac{1}{x}}+\sqrt[3]{\left(1-\dfrac{1}{x}\right)^2}}\right)\)
\(=\dfrac{1}{\sqrt{1+0}+1}+\dfrac{1}{1+\sqrt[3]{1-0}+\sqrt[3]{\left(1-0\right)^2}}\)
\(=\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)