Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen ngoc son
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 1 2021 lúc 21:51

Ta có: \(3x^2+3y^2+4xy+2x-2y+2=0\)

\(\Leftrightarrow x^2+2x+1+y^2-2y+1+2x^2+4xy+2y^2=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x^2+2xy+y^2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2=0\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\left(y-1\right)^2\ge0\forall y\)

\(2\left(x+y\right)^2\ge0\forall x,y\)

Do đó: \(\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2\ge0\forall x,y\)

Dấu '=' xảy ra khi 

\(\left\{{}\begin{matrix}x+1=0\\y-1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\\-1+1=0\left(đúng\right)\end{matrix}\right.\)

Thay x=-1 và y=1 vào biểu thức \(M=\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\), ta được: 

\(M=\left(-1+1\right)^{2016}+\left(-1+2\right)^{2017}+\left(1-1\right)^{2018}\)

\(=0^{2016}+1^{2017}+0^{2018}=1\)

Vậy: M=1

Phạm Minh Quang
Xem chi tiết
Mysterious Person
29 tháng 8 2018 lúc 7:52

1) ta có : \(x^2+5y^2-4xy+2y=3\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=2\)

\(\Leftrightarrow\left(x-2y\right)^2=2-\left(y+1\right)^2\ge0\) \(\Leftrightarrow2\ge\left(y+1\right)^2\Leftrightarrow-\sqrt{2}\le y+1\le\sqrt{2}\)

\(\Leftrightarrow-\sqrt{2}-1\le y\le\sqrt{2}-1\)

ta lại có : \(\left(y+1\right)^2=2-\left(x-2y\right)^2\ge0\)

\(\Leftrightarrow2\ge\left(x-2y\right)^2\Leftrightarrow-\sqrt{2}\le x-2y\le\sqrt{2}\)

\(\Leftrightarrow-\sqrt{2}+2y\le x\le\sqrt{2}+2y\Leftrightarrow-2-3\sqrt{2}\le x\le-2+3\sqrt{2}\)

vậy \(x_{max}=-2+3\sqrt{2}\)

dâu "=" xảy ra khi \(y=\sqrt{2}-1\)

Mysterious Person
29 tháng 8 2018 lúc 8:02

câu 3 : ta có : \(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Leftrightarrow y^2=-\left(x+y\right)^2-7\left(x+y\right)-10\ge0\)

\(\Leftrightarrow-5\le x+y\le-2\)

\(\Rightarrow S_{max}=-2\) khi \(\left\{{}\begin{matrix}y^2=0\\x+y=-2\end{matrix}\right.\Leftrightarrow y=0;x=-2\)

\(S_{min}=-5\) khi \(\left\{{}\begin{matrix}y^2=0\\x+y=-5\end{matrix}\right.\Leftrightarrow y=0;x=-5\)

bài này có trong đề thi hsg trường mk :)

Mysterious Person
29 tháng 8 2018 lúc 8:30

câu 2 này là câu tổ hợp của câu 1 và câu 3 thôi .

a) ta có : \(3x^2+y^2+2xy+4=7x+3y\)

\(\Leftrightarrow2\left(x-1\right)^2=-\left(x+y\right)^2+3\left(x+y\right)-2\)

\(\Leftrightarrow1\le x+y\le2\)

\(\Rightarrow P_{max}=2\) khi \(\left\{{}\begin{matrix}x-1=0\\x+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

\(P_{min}=1\) khi \(\left\{{}\begin{matrix}x-1=0\\x+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)

b) ta có : \(3x^2+y^2+2xy+4=7x+3y\)

\(\Leftrightarrow\left(x+y\right)^2-3\left(x+y\right)+\dfrac{9}{4}=-2x^2+4x-\dfrac{7}{4}\)

\(\Leftrightarrow\left(x+y-\dfrac{3}{2}\right)^2=-2x^2+4x-\dfrac{7}{4}\ge0\)

\(\Leftrightarrow\dfrac{4-\sqrt{2}}{4}\le x\le\dfrac{4+\sqrt{2}}{4}\)

\(\Rightarrow\) GTNN của \(x\)\(\dfrac{4-\sqrt{2}}{4}\) dâu "=" xảy ra khi \(\left\{{}\begin{matrix}x=\dfrac{4-\sqrt{2}}{4}\\x+y=\dfrac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4-\sqrt{2}}{4}\\y=\dfrac{2+\sqrt{2}}{4}\end{matrix}\right.\)

\(\Rightarrow\) GTNN của \(x\)\(\dfrac{4-\sqrt{2}}{4}\) dâu "=" xảy ra khi \(\left\{{}\begin{matrix}x=\dfrac{4+\sqrt{2}}{4}\\x+y=\dfrac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4+\sqrt{2}}{4}\\y=\dfrac{2-\sqrt{2}}{4}\end{matrix}\right.\)

mk nghỉ đề này không phải của lớp 8 đâu phải không :)

Dương Thị Ngọc Ánh
Xem chi tiết
Team Free Fire 💔 Tớ Đan...
21 tháng 12 2019 lúc 22:31

https://olm.vn/hoi-dap/detail/83670859470.html

Khách vãng lai đã xóa
Team Free Fire 💔 Tớ Đan...
21 tháng 12 2019 lúc 22:31

https://olm.vn/hoi-dap/detail/83670859470.html

https://olm.vn/hoi-dap/detail/83670859470.html

Khách vãng lai đã xóa
m
Xem chi tiết
Nguyễn Tất Đạt
12 tháng 6 2018 lúc 10:56

Ta có: \(3x^2-4xy+y^2=3x-3y\)

\(\Leftrightarrow2x^2-2xy+\left(x^2-2xy+y^2\right)=3\left(x-y\right)\)

\(\Leftrightarrow2x\left(x-y\right)+\left(x-y\right)^2-3\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(2x+x-y-3\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(3x-y-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\3x-y=3\end{cases}}\)

Vì x và y là 2 số thực phân biệt nên TH x=y không xảy ra\(\Rightarrow3x-y=3\)

Lại có: \(9x^2-6xy+y^2+y-3x+4=\left(3x-y\right)^2+y-3x+4\)

\(=\left(3x-y\right)^2-\left(3x-y\right)+4\)

Ta thay \(3x-y=3\)vào biểu thức trên:

\(\Rightarrow\left(3x-y\right)^2-\left(3x-y\right)+4=3^2-3+4=9+1=10\)

Vậy giá trị cần tìm của biểu thức đó là 10.

Bùi Trần Gia Bảo
Xem chi tiết
Lê Nguyên THái
8 tháng 6 2018 lúc 22:58

bằng 10 nha bạn!!!

Nguyễn Linh Chi
Xem chi tiết
Trần Minh Ngọc
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 10 2020 lúc 19:05

\(P=3x^2-y^2+4xy=3x^2-y^2+4xy+x^2+y^2=4x^2+4xy\)

\(\Rightarrow\frac{P}{4}=\frac{4x^2+4xy}{x^2+y^2}\)

- Với \(y=0\Rightarrow P=16\)

- Với \(y\ne0\Rightarrow\frac{P}{4}=\frac{4\left(\frac{x}{y}\right)^2+\frac{4x}{y}}{\left(\frac{x}{y}\right)^2+1}\)

Đặt \(t=\frac{x}{y}\Rightarrow\frac{P}{4}=\frac{4t^2+4t}{t^2+1}\Leftrightarrow P.t^2+P=16t^2+16t\)

\(\Leftrightarrow\left(P-16\right)t^2-16t+P=0\)

\(\Delta'=64-P\left(P-16\right)\ge0\)

\(\Leftrightarrow-P^2+16P+64\ge0\)

\(\Leftrightarrow8-8\sqrt{2}\le P\le8+8\sqrt{2}\)

\(\Rightarrow P_{max}=8+8\sqrt{2}\) khi \(t=\sqrt{2}+1\) hay \(x=\left(\sqrt{2}+1\right)y\)

Khách vãng lai đã xóa
laithithuylinh
Xem chi tiết
Trí Thắng Vũ
9 tháng 12 2017 lúc 8:32

sai/sai đề thì phải

Mai Nhã Phương
Xem chi tiết
Việt Hà
15 tháng 12 2016 lúc 19:43

sao giống câu hỏi của mình thế chỉ khác số bạn biết làm ko chỉ mình đikhocroikhocroi