cho x,y thỏa 3x^2+y^2=4xy. Tính N =x-y/x=y
cho các số x,y thỏa mãn đẳng thức \(3x^2+3y^2+4xy+2x-2y+2=0\\ \)
tính giá trị biểu thức M=\(\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\)
Ta có: \(3x^2+3y^2+4xy+2x-2y+2=0\)
\(\Leftrightarrow x^2+2x+1+y^2-2y+1+2x^2+4xy+2y^2=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x^2+2xy+y^2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2=0\)
Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y-1\right)^2\ge0\forall y\)
\(2\left(x+y\right)^2\ge0\forall x,y\)
Do đó: \(\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2\ge0\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}x+1=0\\y-1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\\-1+1=0\left(đúng\right)\end{matrix}\right.\)
Thay x=-1 và y=1 vào biểu thức \(M=\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\), ta được:
\(M=\left(-1+1\right)^{2016}+\left(-1+2\right)^{2017}+\left(1-1\right)^{2018}\)
\(=0^{2016}+1^{2017}+0^{2018}=1\)
Vậy: M=1
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
1) ta có : \(x^2+5y^2-4xy+2y=3\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=2\)
\(\Leftrightarrow\left(x-2y\right)^2=2-\left(y+1\right)^2\ge0\) \(\Leftrightarrow2\ge\left(y+1\right)^2\Leftrightarrow-\sqrt{2}\le y+1\le\sqrt{2}\)
\(\Leftrightarrow-\sqrt{2}-1\le y\le\sqrt{2}-1\)
ta lại có : \(\left(y+1\right)^2=2-\left(x-2y\right)^2\ge0\)
\(\Leftrightarrow2\ge\left(x-2y\right)^2\Leftrightarrow-\sqrt{2}\le x-2y\le\sqrt{2}\)
\(\Leftrightarrow-\sqrt{2}+2y\le x\le\sqrt{2}+2y\Leftrightarrow-2-3\sqrt{2}\le x\le-2+3\sqrt{2}\)
vậy \(x_{max}=-2+3\sqrt{2}\)
dâu "=" xảy ra khi \(y=\sqrt{2}-1\)
câu 3 : ta có : \(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Leftrightarrow y^2=-\left(x+y\right)^2-7\left(x+y\right)-10\ge0\)
\(\Leftrightarrow-5\le x+y\le-2\)
\(\Rightarrow S_{max}=-2\) khi \(\left\{{}\begin{matrix}y^2=0\\x+y=-2\end{matrix}\right.\Leftrightarrow y=0;x=-2\)
\(S_{min}=-5\) khi \(\left\{{}\begin{matrix}y^2=0\\x+y=-5\end{matrix}\right.\Leftrightarrow y=0;x=-5\)
bài này có trong đề thi hsg trường mk :)
câu 2 này là câu tổ hợp của câu 1 và câu 3 thôi .
a) ta có : \(3x^2+y^2+2xy+4=7x+3y\)
\(\Leftrightarrow2\left(x-1\right)^2=-\left(x+y\right)^2+3\left(x+y\right)-2\)
\(\Leftrightarrow1\le x+y\le2\)
\(\Rightarrow P_{max}=2\) khi \(\left\{{}\begin{matrix}x-1=0\\x+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
\(P_{min}=1\) khi \(\left\{{}\begin{matrix}x-1=0\\x+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
b) ta có : \(3x^2+y^2+2xy+4=7x+3y\)
\(\Leftrightarrow\left(x+y\right)^2-3\left(x+y\right)+\dfrac{9}{4}=-2x^2+4x-\dfrac{7}{4}\)
\(\Leftrightarrow\left(x+y-\dfrac{3}{2}\right)^2=-2x^2+4x-\dfrac{7}{4}\ge0\)\(\Leftrightarrow\dfrac{4-\sqrt{2}}{4}\le x\le\dfrac{4+\sqrt{2}}{4}\)
\(\Rightarrow\) GTNN của \(x\) là \(\dfrac{4-\sqrt{2}}{4}\) dâu "=" xảy ra khi \(\left\{{}\begin{matrix}x=\dfrac{4-\sqrt{2}}{4}\\x+y=\dfrac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4-\sqrt{2}}{4}\\y=\dfrac{2+\sqrt{2}}{4}\end{matrix}\right.\)
\(\Rightarrow\) GTNN của \(x\) là \(\dfrac{4-\sqrt{2}}{4}\) dâu "=" xảy ra khi \(\left\{{}\begin{matrix}x=\dfrac{4+\sqrt{2}}{4}\\x+y=\dfrac{3}{2}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4+\sqrt{2}}{4}\\y=\dfrac{2-\sqrt{2}}{4}\end{matrix}\right.\)
mk nghỉ đề này không phải của lớp 8 đâu phải không :)
Cho x,y thỏa mãn x^2+y^2=5
Tìm GTLN và GTNN của S=3x^2-4xy
https://olm.vn/hoi-dap/detail/83670859470.html
https://olm.vn/hoi-dap/detail/83670859470.html
https://olm.vn/hoi-dap/detail/83670859470.html
Cho hai số thực phân biệt x, y thỏa mãn: 3x2 - 4xy + y2 = 3x - 3y. Tính giá trị của biểu thức: 9x2 - 6xy + y2 + y - 3x + 4
Ta có: \(3x^2-4xy+y^2=3x-3y\)
\(\Leftrightarrow2x^2-2xy+\left(x^2-2xy+y^2\right)=3\left(x-y\right)\)
\(\Leftrightarrow2x\left(x-y\right)+\left(x-y\right)^2-3\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(2x+x-y-3\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(3x-y-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=y\\3x-y=3\end{cases}}\)
Vì x và y là 2 số thực phân biệt nên TH x=y không xảy ra\(\Rightarrow3x-y=3\)
Lại có: \(9x^2-6xy+y^2+y-3x+4=\left(3x-y\right)^2+y-3x+4\)
\(=\left(3x-y\right)^2-\left(3x-y\right)+4\)
Ta thay \(3x-y=3\)vào biểu thức trên:
\(\Rightarrow\left(3x-y\right)^2-\left(3x-y\right)+4=3^2-3+4=9+1=10\)
Vậy giá trị cần tìm của biểu thức đó là 10.
Cho hai số thực phân biệt x, y thỏa mãn: 3x2 - 4xy + y2 = 3x - 3y. Tính giá trị của biểu thức: 9x2 - 6xy + y2 + y - 3x + 4
Cho các số x, y thỏa mãn đẳng thức 3x2 + 3y2 + 4xy + 2x - 2y - 2
Tính giá trị biểu thức ( x+y)2015 + ( x +1)2016 + ( y-1)2017
Cho x,y là các số thực thỏa mãn x2 + y2 =4 . Tìm GTLN của biểu thức P = 3x2-y2+4xy+4
\(P=3x^2-y^2+4xy=3x^2-y^2+4xy+x^2+y^2=4x^2+4xy\)
\(\Rightarrow\frac{P}{4}=\frac{4x^2+4xy}{x^2+y^2}\)
- Với \(y=0\Rightarrow P=16\)
- Với \(y\ne0\Rightarrow\frac{P}{4}=\frac{4\left(\frac{x}{y}\right)^2+\frac{4x}{y}}{\left(\frac{x}{y}\right)^2+1}\)
Đặt \(t=\frac{x}{y}\Rightarrow\frac{P}{4}=\frac{4t^2+4t}{t^2+1}\Leftrightarrow P.t^2+P=16t^2+16t\)
\(\Leftrightarrow\left(P-16\right)t^2-16t+P=0\)
\(\Delta'=64-P\left(P-16\right)\ge0\)
\(\Leftrightarrow-P^2+16P+64\ge0\)
\(\Leftrightarrow8-8\sqrt{2}\le P\le8+8\sqrt{2}\)
\(\Rightarrow P_{max}=8+8\sqrt{2}\) khi \(t=\sqrt{2}+1\) hay \(x=\left(\sqrt{2}+1\right)y\)
cho x;y thỏa mãn: 3x2+3y2+4xy+2x-2y+2=0
tính giá trị bt: M = (x+y)2013+(x+2)2014+(y-1)2015
giúp mhnhf vs nha
cho x,y thỏa mãn đẳng thức 3x^2 +3y^2+4xy+2xy +2x-2y+2=0. Tính giá trị của biểu thức M=(x+y)^2010+(x+2)^2011+(y-1)^2012
CÁC BẠN GIÚP MK VS MK CẦN GẤP
sao giống câu hỏi của mình thế chỉ khác số bạn biết làm ko chỉ mình đi