Cho tam giác ABC. Gọi M là trung điểm của BC. Trên tia đối của MA lấy điểm K sao cho MA=MK.C/m:
a. Tam giác AMC= tam giác KMB và AC // BK.
b. CK// AB. C/m thêm tam giác AMB=tam giác KMC.
Cho tam giác ABC. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm K sao cho MK = MA. a) Chứng minh rằng: tam giác AMB = tam giác KMC b) Trên cạnh AB, CK lần lượt lấy điểm E, F sao cho BE = CF. Chứng minh rằng: Ba điểm E, M, F thẳng hàng.( giúp mình với T^T)
a: Xét ΔAMB và ΔKMC có
MA=MK
\(\widehat{AMB}=\widehat{KMC}\)
MB=MC
Do đó: ΔAMB=ΔKMC
b: Xét tứ giác BECF có
BE//CF
BE=CF
Do đó: BECF là hình bình hành
Suy ra: BC và EF cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của FE
hay F,M,E thẳng hàng
cho tam giác abc có AB=AC,gọi AM là tia phân giác của góc A(M thuộc BC)
a Chứng minh tam giác AMB = tam giác AMC
b Chứng minh M là trung điểm của cạnh BC và AM ⊥ BC
c Trên tia AM lấy điểm K sao cho MA = MK. Chứng minh AB = CK và AB // CK
Cho tam giác ABC, gọi M là trung điểm của BC , trên tia đối của MA lấy điểm K sao cho MA = MK
Chứng minh : a ) tam giác AMB = tam giác KMC
b) AB // KC
Xét \(\Delta AMB\) và \(\Delta KMC\) có :
AM = MK ( gt )
\(\widehat{M_1}=\widehat{M_2}\) 9 đối đỉnh )
BM = MC ( gt )
=> \(\Delta AMB\) = \(\Delta KMC\)
b)
\(\Delta AMB\) =\(\Delta KMC\)
\(\Rightarrow\widehat{B_1}=\widehat{C_1}\)
Mà góc B1 l C1 so le trong
=> BA // KC
Cho tam giác ABC M là trung điểm của BC trên tia đối của ma lấy điểm D sao cho MD = ma a chứng minh tam giác amb bằng tam giác amc và AB song song CD B Chứng minh tam giác ABC bằng tam giác BM B và AC song song BD C Gọi M là trung điểm của AC và am cắt BM tại g chứng minh C gần đi qua trung điểm của ABd bn cắt cm tại k và h là trung điểm của cd c /m 3 điểm A ,H,K THẲNG hàng e gọi I là trung điểm của ab di cắt bm tại f c/m m là trung điểm của fk
Khiếp, bạn gõ lại cẩn thận từng chữ được không ạ?
a) Sửa đề: ΔAMB=ΔDMC
Xét ΔAMB và ΔDMC có
MA=MD(gt)
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔAMB=ΔDMC(c-g-c)
Cho tam giác ABC vuông tại A. Điểm M là trung điểm của BC. Trên tia đối của tia MA lấy điểm K sao cho MA=MK. Chứng minh rằng:
a) tam giác AMC=tam giác KMB
b) AC=BK
c) AB vuông góc với BK
d)AM=\(\frac{1}{2}\)BC
Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC a) Chứng minh tam giác AMB bằng tam giác AMC. b) Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh AB//CD c) Chứng minh AC//BD
mik cần gấp
\(a,\left\{{}\begin{matrix}AB=AC\\BM=MC\\AM\text{ chung}\end{matrix}\right.\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\\ b,\left\{{}\begin{matrix}BM=MC\\\widehat{AMB}=\widehat{CMD}\left(đđ\right)\\AM=MD\end{matrix}\right.\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\\ \Rightarrow\widehat{ABC}=\widehat{BCD}\\ \text{Mà 2 góc này ở vị trí slt nên }AB\text{//}CD\\ c,\left\{{}\begin{matrix}BM=MC\\\widehat{AMC}=\widehat{BMD}\\AM=MD\end{matrix}\right.\Rightarrow\Delta AMC=\Delta DMB\left(c.g.c\right)\\ \Rightarrow\widehat{ACB}=\widehat{CBD}\\ \text{Mà 2 góc này ở vị trí slt nên }AC\text{//}BD\)
a) Xét ΔAMB và ΔAMC có
AB=AC(gt)
MB=MC(M là trung điểm của BC)
AM chung
Do đó: ΔAMB=ΔAMC(c-c-c)
b) Sửa đề: AM=MD
Xét ΔAMC và ΔDMB có
AM=DM(gt)
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
MC=MB(M là trung điểm của BC)
Do đó: ΔAMC=ΔDMB(c-g-c)
⇒AC=DB(Hai cạnh tương ứng)
c) Ta có: ΔAMC=ΔDMB(cmt)
nên \(\widehat{ACM}=\widehat{DBM}\)(hai góc tương ứng)
mà \(\widehat{ACM}\) và \(\widehat{DBM}\) là hai góc ở vị trí so le trong
nên AC//BD(Dấu hiệu nhận biết hai đường thẳng song song)
cho tam giác ABC có AB=AC , M là trung điểm của BC a, chứng minh tam giác AMB= tam giác AMC b trên tia đối MA ta lấy điểm D . sao cho MA=MD c tam giác AMB = tam giác DMC
â) Xét tam giác AMB và tam giác AMC có:
AB=AC (gt)
BM=CM ( vì M là trung điểm của BC)
AM là cạnh chung
suy ra tam giác AMB=tam giác AMC (c-c-c)
b) Xet tam giac AMB va tam giác DMC có :
MA=MD (gt)
ABM=DCM ( vi la 2goc đối đỉnh)
BM=CM(gt)
suy ra tam giác AMB=tam giác DMC (c-g-c)
: Cho tam giác ABC có AB = AC, gọi AM là tia phân giác của góc A(M thuộc BC). a) Chứng minh tam giác AMB = tam giác AMC
b) Chứng minh M là trung điểm của cạnh BC và AM ⊥ BC.
c) Trên tia AM lấy điểm K sao cho MA = MK. Chứng minh AB = CK và AB // CK
a
vì AM là tia phân giác của góc A=>góc BAM=CAM
xét tam giác AMB và tam giác AMC có:
góc BAM=CAM,AM chung,AB=AC=>tam giác AMB = tam giác AMC
b
vì tam giác AMB = tam giác AMC=>MB=MC=>M là trung điểm BC
vì tam giác AMB = tam giác AMC=>góc BAM=CAM mà góc BAM+CAM=180=>BAM=CAM=180 độ/2=90 độ=>AM vuông góc với BC
c
xét tam giác ABM và KCM có
MB=MC,MA=MK,góc BMA=CMK(vì đối đỉnh)=>tam giác ABM = KCM=>AB=CK
vì tam giác ABM = KCM=>góc ABM=KMB mà 2 góc trên ở vị trí so le trog=>AB//CK