x^2 - 8x +15
x^16 +x^8 -2
x^3 -5 x^3 +4x
phân tích
Tìm x, biết:
a) x + 99:3 = 55
b) (x - 25): 15=20
c) (3.x - 15).7 = 42
d) (8x - 16)(x-5)=0
e) x.(x+1)=2+4+6+8+10+...+2500
a, \(x\) + 99: 3 = 55
\(x\) + 33 = 55
\(x\) = 55 - 33
\(x\) = 22
b, (\(x\) - 25):15 = 20
\(x\) - 25 = 20 x 15
\(x\) - 25 = 300
\(x\) = 300 + 25
\(x\) = 325
c, (3\(x\) - 15).7 = 42
3\(x\) - 15 = 42:7
3\(x\) - 15 = 6
3\(x\) = 6 + 15
3\(x\) = 21
\(x\) = 21: 3
\(x\) = 7
d, (8\(x\) - 16).(\(x\) -5) = 0
\(\left[{}\begin{matrix}8x-16=0\\x-5=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}8x=16\\x=5\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=16:8\\x=5\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)
Vậy \(x\) \(\in\) {2; 5}
Dùng kĩ thuật tích AC
1) x ^ 2 + 3x + 2
2) x ^ 2 + 4x + 3
3) x ^ 2 + 5x + 4
4) x ^ 2 - 4x + 3
5) x ^ 2 - 4x + 4
6) x ^ 2 - 5x + 4
7) x ^ 2 - 5x + 6
8) x ^ 2 + 6x + 5
9) x ^ 2 - 7x + 10
10) x ^ 2 + 8x + 12
11) x ^ 2 - 8x + 16
12) x ^ 2 + 8x + 15
13) x ^ 2 - 8x + 7
14) x ^ 2 + 9x + 8
15) x ^ 2 - 9x + 14
16) x ^ 2 + 9x + 18
17) x ^ 2 - 9x + 20
18) 2x ^ 2 - 3x + 1
1: \(x^2+3x+2\)
\(=x^2+x+2x+2\)
=x(x+1)+2(x+1)
=(x+1)(x+2)
2: \(x^2+4x+3\)
\(=x^2+x+3x+3\)
=x(x+1)+3(x+1)
=(x+1)(x+3)
3: \(x^2+5x+4\)
\(=x^2+x+4x+4\)
=x(x+1)+4(x+1)
=(x+1)(x+4)
4: \(x^2-4x+3\)
\(=x^2-x-3x+3\)
=x(x-1)-3(x-1)
=(x-1)(x-3)
5: \(x^2-4x+4=x^2-2\cdot x\cdot2+2^2=\left(x-2\right)^2\)
6: \(x^2-5x+4\)
\(=x^2-x-4x+4\)
=x(x-1)-4(x-1)
=(x-1)(x-4)
7: \(x^2-5x+6\)
\(=x^2-2x-3x+6\)
=x(x-2)-3(x-2)
=(x-2)(x-3)
8: \(x^2+6x+5\)
\(=x^2+x+5x+5\)
=x(x+1)+5(x+1)
=(x+1)(x+5)
9: \(x^2-7x+10\)
\(=x^2-2x-5x+10\)
=x(x-2)-5(x-2)
=(x-2)(x-5)
10: \(x^2+8x+12\)
\(=x^2+2x+6x+12\)
=x(x+2)+6(x+2)
=(x+2)(x+6)
11: \(x^2-8x+16=x^2-2\cdot x\cdot4+4^2=\left(x-4\right)^2\)
12: \(x^2+8x+15\)
\(=x^2+3x+5x+15\)
=x(x+3)+5(x+3)
=(x+3)(x+5)
13: \(x^2-8x+7\)
\(=x^2-x-7x+7\)
=x(x-1)-7(x-1)
=(x-1)(x-7)
14: \(x^2+9x+8\)
\(=x^2+x+8x+8\)
=x(x+1)+8(x+1)
=(x+1)(x+8)
15: \(x^2-9x+14\)
\(=x^2-2x-7x+14\)
=x(x-2)-7(x-2)
=(x-2)(x-7)
16: \(x^2+9x+18\)
\(=x^2+3x+6x+18\)
=x(x+3)+6(x+3)
=(x+3)(x+6)
17: \(x^2-9x+20\)
\(=x^2-4x-5x+20\)
=x(x-4)-5(x-4)
=(x-4)(x-5)
18: \(2x^2-3x+1\)
\(=2x^2-2x-x+1\)
=2x(x-1)-(x-1)
=(x-1)(2x-1)
1. \(x^2+3x+2=\left(x+1\right)\left(x+2\right)\)
2. \(x^2+4x+3=\left(x+1\right)\left(x+3\right)\)
3. \(x^2+5x+4=\left(x+1\right)\left(x+4\right)\)
4. \(x^2-4x+3=\left(x-1\right)\left(x-3\right)\)
5. \(x^2-4x+4=\left(x-2\right)^2\)
6. \(x^2-5x+4=\left(x-1\right)\left(x-4\right)\)
7. \(x^2-5x+6=\left(x-2\right)\left(x-3\right)\)
8. \(x^2+6x+5=\left(x+1\right)\left(x+5\right)\)
9. \(x^2-7x+10=\left(x-2\right)\left(x-5\right)\)
10. \(x^2+8x+12=\left(x+2\right)\left(x+6\right)\)
11. \(x^2-8x+16=\left(x-4\right)^2\)
12. \(x^2+8x+15=\left(x+3\right)\left(x+5\right)\)
13. \(x^2-8x+7=\left(x-1\right)\left(x-7\right)\)
14. \(x^2+9x+8=\left(x+1\right)\left(x+8\right)\)
15. \(x^2-9x+14=\left(x-2\right)\left(x-7\right)\)
16. \(x^2+9x+18=\left(x+3\right)\left(x+6\right)\)
17. \(x^2-9x+20=\left(x-4\right)\left(x-5\right)\)
\(18.2x^2-3x+1=2x^2-x-2x+1\)
\(=x\cdot\left(2x-1\right)-\left(2x-1\right)=\left(2x-1\right)\left(x-1\right)\)
1,giải các phương trình sau
a,(x^2-x-10).(x^2-x-8)-8=0
b,(x-1).(x+1).(x+3).(x+5)+15=0
c,15x^4-8x^3-14x^2-8x+15+0
Phân tích đa thức thành nhân tử ( đặt biến phụ):
a) (x^2+4x+8)^2+3x(x^2+4x+8)+2x^2
b) (x^2+x+1)(x^2+x+2)-12
c) (x^2+8x+7)(x^2+8x+15)+15
d) (x+2)(x+3)(x+4)(x+5)-24
Phân tích các đa thức sau thành nhân tử.
1) a^2+ab+2b-4 2) x^3-x 3) x^2-6x+8 4) ab+b^2-3a-3b 5) x^3-4x^2-8x+8
6)9x^2+6x-8 7)x^2-y^2-4x+4 8)5x^3-10x^2+5x 9) 3x^2-8x+4 10) 4x^2-4x-3
11) x^2-7x+12 12)x^2-5x-14 13) 3x^2-7x+2 14) a.(x^2+1)-x.(a^2-1) 15) x^4+4
16) (x+2).(x+3).(x+4).(x+5)-24 17) (a+1).(a+3).(a+5).(a+7)+15
phân tích ....
a, x^3 -1
b,8x^3-y^3
c,x^2-8x+16
d,25y^3-1
e,27-8y^3
2x^2-8x+8
Sửa lại câu d) là `25y^2`
`a)x^3-1`
`=(x-1)(x^2+x+1)`
`b)8x^3-y^3`
`=(2x)^3-y^3`
`=(2x-y)(4x^2+2xy+y^2)`
`c)x^2-8x+16`
`=x^2-2.x.4+4^2`
`=(x-4)^2`
`d)25y^2-1`
`=(5y)^2-1`
`=(5y-1)(5y+1(`
`e)27-8y^3`
`=3^3-(2y)^3`
`=(3-2y)(9+6y+4y^2)`
`f)2x^2-8x+8`
`=2(x^2-4x+4)`
`=2(x-2)^2`
a) x3 - 1 = x3 - 13
= (x - 1)(x2 - x + 1)
b) 8x3 - y3 = (2x)3 - y3
= (2x - y)(4x2 + 2xy + y2)
c) x2 - 8x + 16 = x2 - 2.4x + 42
= (x - 4)2
d) đề có bị sai không , nên mình sưa lại đề nhé :
25y2 - 1 = (5y)2 - 12
= (5y - 1)(5y + 1)
e) 27 - 8y3 = 33 - (2y)3
= (3 - 2y)(9 + 6y + 4y2)
f) 2x2 - 8x + 8 = 2(x2 - 4x + 4)
= 2(x - 2)2
Chúc bạn học tốt
2)x^2-2xy+y^2-2x+2y
3)3x^2-2x-5
4)16-x^2+4xy-4x^2
5)x^2-2x+1-y^2
6)x^2+8x+15
7)(x^2+6x+8)(x^2+14x+48)-9
8)(x^2-8x+15)(x^2-16x+60)-24x^2
9)x^5+x^4+1
10)x^4-x^3-10x^2+2x+4
Giải bất phương trình bài toán sau :
1. 8x-1/9 +3x-2/4<43+8x/12 + 35x/36
2. 5x-17/14+x-3/26 > 29-9x/91
3. x-2/5+2(x+1)/3 > 13x-8/15
4. x/30+1/6-x/5 > 2x/45+16
5. 8x+5/6+4x+3/6<3(x-2)/30
6. x+7/10-x-5/5>x-9/3
7. 9(x-1)-2(3x+4)<3(x-1)
8. x+7/4-2x-3/7<2x+3/8-8x+5/28
Tìm x biết
1) 8x ^ 3 - 12x ^ 2 + 6x - 1 = 0
2) x ^ 3 - 6x ^ 2 + 12x - 8 = 27
3) x ^ 2 - 8x + 16 = 5 * (4 - x) ^ 3
4) (2 - x) ^ 3 = 6x(x - 2)
5) (x + 1) ^ 3 - (x - 1) ^ 3 - 6 * (x - 1) ^ 2 = - 10
6) (3 - x) ^ 3 - (x + 3) ^ 3 = 36x ^ 2 - 54x
1) \(8x^3-12x^2+6x-1=0\)
\(\Leftrightarrow\left(2x\right)^2-3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2-1^3=0\)
\(\Leftrightarrow\left(2x-1\right)^3=0\)
\(\Leftrightarrow2x-1=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
2) \(x^3-6x^2+12x-8=27\)
\(\Leftrightarrow x^3-3\cdot x^2\cdot2+3\cdot2^2\cdot x-2^3=27\)
\(\Leftrightarrow\left(x-2\right)^3=27\)
\(\Leftrightarrow\left(x-2\right)^3=3^3\)
\(\Leftrightarrow x-2=3\)
\(\Leftrightarrow x=3+2\)
\(\Leftrightarrow x=5\)
3) \(x^2-8x+16=5\left(4-x\right)^3\)
\(\Leftrightarrow\left(x-4\right)^2=5\left(4-x\right)^3\)
\(\Leftrightarrow\left(4-x\right)^2=5\left(4-x\right)^3\)
\(\Leftrightarrow5\left(4-x\right)=1\)
\(\Leftrightarrow4-x=\dfrac{1}{5}\)
\(\Leftrightarrow x=4-\dfrac{1}{5}\)
\(\Leftrightarrow x=\dfrac{19}{5}\)
4) \(\left(2-x\right)^3=6x\left(x-2\right)\)
\(\Leftrightarrow8-12x+6x^2-x^3=6x^2-12x\)
\(\Leftrightarrow-12x+6x^2-6x^2+12x=8-x^3\)
\(\Leftrightarrow8-x^3=0\)
\(\Leftrightarrow x^3=8\)
\(\Leftrightarrow x^3=2^3\)
\(\Leftrightarrow x=2\)
5) \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-10\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\left(x^2-2x+1\right)=-10\)
\(\Leftrightarrow\left(x^3-x^3\right)+\left(3x-3x\right)+\left(3x^2+3x^2\right)+\left(1+1\right)-6x^2+12x-6=-10\)
\(\Leftrightarrow0+0+0+\left(6x^2-6x^2\right)+12x-4=-10\)
\(\Leftrightarrow12x-4=-10\)
\(\Leftrightarrow12x=-10+4\)
\(\Leftrightarrow12x=-6\)
\(\Leftrightarrow x=\dfrac{-6}{12}\)
\(\Leftrightarrow x=-\dfrac{1}{2}\)
6) \(\left(3-x\right)^3-\left(x+3\right)^3=36x^2-54x\)
\(\Leftrightarrow27-27x+9x^2-x^3-x^3-9x^2-27x-27=36x^2-54x\)
\(\Leftrightarrow-54x-2x^3=36x^2-54x\)
\(\Leftrightarrow-2x^3=36x^2\)
\(\Leftrightarrow-2x^3-36x^2=0\)
\(\Leftrightarrow-2x^2\left(x+18\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x^2=0\\x+18=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-18\end{matrix}\right.\)