Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đinh Cẩm Tú
Xem chi tiết
Tùng Nguyễn
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
Minh Nguyen
7 tháng 7 2020 lúc 14:06

Bài 2 :

a) \(ĐKXĐ:\hept{\begin{cases}x;y>0\\x\ne y\end{cases}}\)

b) \(A=\left(\sqrt{x}+\frac{y-\sqrt{xy}}{\sqrt{x}-\sqrt{y}}\right):\frac{x\sqrt{xy}+y\sqrt{xy}}{\sqrt{xy}\left(y-x\right)}\)

\(\Leftrightarrow A=\frac{x-\sqrt{xy}+y-\sqrt{xy}}{\sqrt{x}-\sqrt{y}}:\frac{x+y}{y-x}\)

\(\Leftrightarrow A=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{x}-\sqrt{y}}\cdot\frac{y-x}{x+y}\)

\(\Leftrightarrow A=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(y-x\right)}{x+y}\)

c) Thay \(x=4+2\sqrt{3},y=4-2\sqrt{3}\)vào A, ta được :

   \(A=\frac{\left(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\right)\left(4-2\sqrt{3}-4-2\sqrt{3}\right)}{4+2\sqrt{3}+4-2\sqrt{3}}\)

\(\Leftrightarrow A=\frac{\left(\sqrt{\left(1+\sqrt{3}\right)^2}-\sqrt{\left(1-\sqrt{3}\right)^2}\right).\left(-4\sqrt{3}\right)}{8}\)

\(\Leftrightarrow A=\frac{\left(1+\sqrt{3}-\sqrt{3}+1\right).\left(-4\sqrt{3}\right)}{8}=\frac{-8\sqrt{3}}{8}=-\sqrt{3}\)

Vậy ....

Khách vãng lai đã xóa
Tran Le Khanh Linh
7 tháng 7 2020 lúc 20:46

Bài 1:

\(\frac{2\sqrt{8}-\sqrt{12}}{\sqrt{18}-\sqrt{48}}-\frac{\sqrt{5}+\sqrt{27}}{\sqrt{30}-\sqrt{2}}=\frac{2\sqrt{2\cdot4}-\sqrt{3\cdot4}}{\sqrt{2\cdot9}-\sqrt{16\cdot3}}-\frac{\sqrt{5}+\sqrt{9\cdot3}}{\sqrt{30}-\sqrt{2}}\)

\(=\frac{4\sqrt{2}-2\sqrt{3}}{3\sqrt{2}-4\sqrt{3}}-\frac{\sqrt{5}+3\sqrt{3}}{\sqrt{30}-\sqrt{2}}=\frac{\left(4\sqrt{2}-2\sqrt{3}\right)\left(\sqrt{30}-\sqrt{2}\right)-\left(\sqrt{5}+3\sqrt{3}\right)\left(3\sqrt{2}-4\sqrt{3}\right)}{\left(3\sqrt{2}-4\sqrt{3}\right)\left(\sqrt{30}-\sqrt{2}\right)}\)

\(=\frac{4\sqrt{60}-8-2\sqrt{90}+2\sqrt{6}-3\sqrt{10}+4\sqrt{15}-9\sqrt{6}+36}{3\sqrt{60}-6-4\sqrt{90}+4\sqrt{6}}\)

\(=\frac{8\sqrt{15}-8-6\sqrt{10}+2\sqrt{6}-3\sqrt{10}+4\sqrt{15}-9\sqrt{6}+36}{6\sqrt{15}-6-12\sqrt{10}+4\sqrt{6}}\)

\(=\frac{12\sqrt{15}-2\sqrt{10}-7\sqrt{6}+28}{6\sqrt{15}-12\sqrt{10}+4\sqrt{6}-6}\)

Khách vãng lai đã xóa
Ha Pham
Xem chi tiết
Gia Huy
3 tháng 8 2023 lúc 6:23

2

\(M=2y-3x\sqrt{y}+x^2=y-2x\sqrt{y}+x^2+y-x\sqrt{y}\\ =\left(\sqrt{y}-x\right)^2+\sqrt{y}\left(\sqrt{y}-x\right)\\ =\left(\sqrt{y}-x\right)\left(\sqrt{y}-x+\sqrt{y}\right)\\ =\left(\sqrt{y}-x\right)\left(2\sqrt{y}-x\right)\)

b

\(y=\dfrac{18}{4+\sqrt{7}}=\dfrac{18\left(4-\sqrt{7}\right)}{16-7}=\dfrac{72-18\sqrt{7}}{9}=\dfrac{72}{9}-\dfrac{18\sqrt{7}}{9}=8-2\sqrt{7}\\ =7-2\sqrt{7}.1+1=\left(\sqrt{7}-1\right)^2\)

Thế x = 2 và y = \(\left(\sqrt{7}-1\right)^2\) vào M được:

\(M=2\left(\sqrt{7}-1\right)^2-3.2.\sqrt{\left(\sqrt{7}-1\right)^2}+2^2\\ =2\left(8-2\sqrt{7}\right)-6.\left(\sqrt{7}-1\right)+4\\ =16-4\sqrt{7}-6\sqrt{7}+6+4\\ =26-10\sqrt{7}\)

Nguyễn Lê Phước Thịnh
3 tháng 8 2023 lúc 4:01

1:

a: =>2x-2căn x+3căn x-3-5=2x-4

=>căn x-8=-4

=>căn x=4

=>x=16

b: \(\Leftrightarrow\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)-3\sqrt{x}\left(\sqrt{x}-2\right)=0\)

=>(căn x-2)(x-căn x+4)=0

=>căn x-2=0

=>x=4

Big City Boy
Xem chi tiết
☆Châuuu~~~(๑╹ω╹๑ )☆
5 tháng 2 2022 lúc 10:42

Có :

\(x=\dfrac{1}{\sqrt{5}-2}\Rightarrow x^2=\dfrac{1}{\left(\sqrt{5}-2\right)^2}=\dfrac{1}{5-4\sqrt{5}+4}\\ =\dfrac{1}{9-4\sqrt{5}}\\ y=\dfrac{1}{5+4\sqrt{5}}=\dfrac{1}{5+4\sqrt{5}+2}=\dfrac{1}{\left(\sqrt{5}+2\right)^2}\\ \Rightarrow\sqrt{y}=\sqrt{\dfrac{1}{\left(\sqrt{5}+2\right)^2}}=\dfrac{1}{\sqrt{5}+2}\) 

\(\Rightarrow A=\dfrac{1}{9-4\sqrt{5}}-3.\dfrac{1}{\sqrt{5}-2}.\dfrac{1}{\sqrt{5}+2}+\dfrac{2}{9+4\sqrt{5}}\\ =\dfrac{1}{9-4\sqrt{5}}-\dfrac{3}{5-4}+\dfrac{2}{9+4\sqrt{5}}\\ =\dfrac{9+\sqrt{5}+2\left(9-4\sqrt{5}\right)}{\left(9-4\sqrt{5}\right)\left(9+4\sqrt{5}\right)}-3=\dfrac{27-4\sqrt{5}}{81-80-3}\\ =27-4\sqrt{5}-3=24-4\sqrt{5}\)

An Cute
Xem chi tiết
Adu vip
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 7 2021 lúc 23:52

a) Vì \(3-2\sqrt{2}>0\) nên hàm số đồng biến

b) Thay \(x=3+2\sqrt{2}\) vào hàm số, ta được:

\(y=\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)+\sqrt{2}-1\)

\(=9-8+\sqrt{2}-1\)

\(=\sqrt{2}\)

Trần Ái Linh
22 tháng 7 2021 lúc 10:55

a) `a=3-2\sqrt2>0 =>` Hàm số đồng biến.

b) `y=(3-2\sqrt2)(3+2\sqrt2)+\sqrt2-1=3^2-(2\sqrt2)^2+\sqrt2-1=\sqrt2`

`=> y=\sqrt2` khi `x=3+2\sqrt2`

kietdeptrai
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 10 2023 lúc 12:58

1: Khi x=36 thì \(A=\dfrac{6}{2\cdot6-4}=\dfrac{6}{12-4}=\dfrac{6}{8}=\dfrac{3}{4}\)

2: 

ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x< >4\end{matrix}\right.\)

\(C=B:A\)

\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}+\dfrac{3\sqrt{x}-x}{x-4}\right):\dfrac{\sqrt{x}}{2\sqrt{x}-4}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)+3\sqrt{x}-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{2\left(\sqrt{x}-2\right)}{\sqrt{x}}\)

\(=\dfrac{x-2\sqrt{x}+3\sqrt{x}-x}{\sqrt{x}+2}\cdot\dfrac{2}{\sqrt{x}}=\dfrac{2}{\sqrt{x}+2}\)

3: \(C\cdot\sqrt{x}< \dfrac{4}{3}\)

=>\(\dfrac{2\sqrt{x}}{\sqrt{x}+2}-\dfrac{4}{3}< 0\)

=>\(\dfrac{2\sqrt{x}\cdot3-4\left(\sqrt{x}+2\right)}{3\left(\sqrt{x}+2\right)}< 0\)

=>\(6\sqrt{x}-4\sqrt{x}-8< 0\)

=>\(2\sqrt{x}-8< 0\)

=>\(\sqrt{x}< 4\)

=>\(0< =x< 16\)

Kết hợp ĐKXĐ của C, ta được: \(\left\{{}\begin{matrix}0< x< 16\\x< >4\end{matrix}\right.\)

Phạm Quỳnh Anh
Xem chi tiết
Akai Haruma
28 tháng 10 2021 lúc 17:02

Lời giải:
a. ĐKXĐ: $x>0; x\neq 4$

\(M=\frac{x}{\sqrt{x}(\sqrt{x}-2)}-\frac{4\sqrt{x}-4}{\sqrt{x}(\sqrt{x}-2)}=\frac{x-(4\sqrt{x}-4)}{\sqrt{x}(\sqrt{x}-2)}=\frac{x-4\sqrt{x}+4}{\sqrt{x}(\sqrt{x}-2)}=\frac{(\sqrt{x}-2)^2}{\sqrt{x}(\sqrt{x}-2)}=\frac{\sqrt{x}-2}{\sqrt{x}}\)

b.

\(x=3+2\sqrt{2}=(\sqrt{2}+1)^2\Rightarrow \sqrt{x}=\sqrt{2}+1\)

\(M=\frac{\sqrt{x}-2}{\sqrt{x}}=\frac{\sqrt{2}+1-2}{\sqrt{2}+1}=3-2\sqrt{2}\)

c.

$M>0\Leftrightarrow \frac{\sqrt{x}-2}{\sqrt{x}}>0$

$\Leftrightarrow \sqrt{x}-2>0$

$\Leftrightarrow \sqrt{x}>2\Leftrightarrow x>4$

Kết hợp đkxđ suy ra $x>4$