tìm x
x\(⋮\)4; x\(⋮\)5, x\(⋮\)8 và -20<x<180
\(⋮\)
1. Tìm chữ số tận cùng của tích:
S = 2 x 2 x 2 x 2 x ... x 2 (2023 chữ số 2)
2. Tìm chữ số tận cùng của tích:
S = 3 x 13 x 23 x ... x 2023
3. Tìm chữ số tận cùng của tích:
S = 4 x 4 x 4 x ... x 4 (2023 chữ số 4)
4. Tìm chữ số tận cùng của tích:
S = 7 x 17 x 27 x ... x 2017
1) \(S=2.2.2..2\left(2023.số.2\right)\)
\(\Rightarrow S=2^{2023}=\left(2^{20}\right)^{101}.2^3=\overline{....6}.8=\overline{.....8}\)
2) \(S=3.13.23...2023\)
Từ \(3;13;23;...2023\) có \(\left[\left(2023-3\right):10+1\right]=203\left(số.hạng\right)\)
\(\) \(\Rightarrow S\) có số tận cùng là \(1.3^3=27\left(3^{203}=\left(3^{20}\right)^{10}.3^3\right)\)
\(\Rightarrow S=\overline{.....7}\)
3) \(S=4.4.4...4\left(2023.số.4\right)\)
\(\Rightarrow S=4^{2023}=\overline{.....4}\)
4) \(S=7.17.27.....2017\)
Từ \(7;17;27;...2017\) có \(\left[\left(2017-7\right):10+1\right]=202\left(số.hạng\right)\)
\(\Rightarrow S\) có tận cùng là \(1.7^2=49\left(7^{202}=7^{4.50}.7^2\right)\)
\(\Rightarrow S=\overline{.....9}\)
1. Tìm chữ số tận cùng của tích:
S = 2 x 2 x 2 x 2 x ... x 2 (2023 chữ số 2)
2. Tìm chữ số tận cùng của tích:
S = 3 x 13 x 23 x ... x 2023
3. Tìm chữ số tận cùng của tích:
S = 4 x 4 x 4 x ... x 4 (2023 chữ số 4)
4. Tìm chữ số tận cùng của tích:
S = 7 x 17 x 27 x ... x 2017
Bài 1:
S = 2 x 2 x 2 x 2 x 2 x...x 2 (2023 chữ số 2)
Nhóm 4 thừa số 2 vào một nhóm thì vì:
2023 : 4 = 505 dư 3
Vậy
S = (2x2x2x2) x...x (2 x 2 x 2 x 2) x 2 x 2 x 2 có 503 nhóm (2x2x2x2)
S = \(\overline{..6}\) x ...x \(\overline{..6}\) x 8
S = \(\overline{..6}\) x 8
S = \(\overline{..8}\)
Bài 2:
S = 3 x 13 x 23 x...x 2023
Xét dãy số: 3; 13; 23;..;2023
Dãy số trên là dãy số cách đều với khoảng cách là: 13 - 3 = 10
Số số hạng của dãy số trên là: (2023 - 3):10 + 1 = 203 (số hạng)
Vậy chữ số tận cùng của S bằng chữ số tận cùng của A.
Với A = 3 x 3 x 3 x...x 3 (203 thừa số 3)
Nhóm 4 thừa số 3 thành 1 nhóm, vì 203 : 4 = 50 (dư 3)
A = (3 x 3 x 3 x 3)x...x(3x3x3x3)x3x3x3 có 50 nhóm (3x3x3x3)
A = \(\overline{..1}\) x...x \(\overline{..1}\) x 27
A = \(\overline{..7}\)
Bài 3:
A =4 x 4 x 4 x...x 4(2023 chữ số 4)
vì 2023 : 2 = 1011 dư 1
A = (4 x 4) x (4 x 4) x...x(4 x 4) x 4 có 1011 nhóm (4 x 4)
A = \(\overline{..6}\) x \(\overline{..6}\) x \(\overline{..6}\) x 4
A = \(\overline{...6}\) x 4
A = \(\overline{...4}\)
Bài 1: Tìm x, biết 4 – 2(x + 1) = 2
Bài 2. Tìm x biết: |2x – 3| - 1 = 2
Bài 3. Tìm x, biết: 3 1 3 x + 16 3 4 = - 13,25
Bài 4: Tìm x biết: 60% x + 2 3 x = - 76
Bài 5: Tìm x, biết: a) 11 - (-53 + x) = 97 b) -(x + 84) + 213 = -16
thanks
Bài 1:
Ta có: \(4-2\left(x+1\right)=2\)
\(\Leftrightarrow2\left(x+1\right)=2\)
\(\Leftrightarrow x+1=1\)
hay x=0
Bài 2:
Ta có: \(\left|2x-3\right|-1=2\)
\(\Leftrightarrow\left|2x-3\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)
Tìm x để các bthuc sau đạt gtnn,tìm gtnn đó
\(\sqrt{x-4}-2\)
\(x-\sqrt{x}\)
\(x-4\sqrt{x}+10\)
\(\sqrt{x^2-2x+4+1}\)
Bài 1:
$\sqrt{x-4}-2$
ĐKXĐ: $x\geq 4$
Ta thấy $\sqrt{x-4}\geq 0$ với mọi $x\geq 4$
$\Rightarrow \sqrt{x-4}-2\geq 0-2=-2$
Vậy gtnn của biểu thức là $-2$. Giá trị này đạt được tại $x-4=0$
$\Leftrightarrow x=4$
Bài 2: $x-\sqrt{x}$
ĐKXĐ: $x\geq 0$
$x-\sqrt{x}=(x-\sqrt{x}+\frac{1}{4})-\frac{1}{4}=(\sqrt{x}-\frac{1}{2})^2-\frac{1}{4}$
$\geq 0-\frac{1}{4}=\frac{-1}{4}$
Vậy gtnn của biểu thức là $\frac{-1}{4}$. Giá trị này đạt được khi $\sqrt{x}-\frac{1}{2}=0$
$\Leftrightarrow x=\frac{1}{4}$
Bài 3:
$x-4\sqrt{x}+10$
ĐKXĐ: $x\geq 0$
Ta có: $x-4\sqrt{x}+10=(x-4\sqrt{x}+4)+6=(\sqrt{x}-2)^2+6\geq 0+6=6$
Vậy gtnn của biểu thức là $6$. Giá trị này đạt được khi $\sqrt{x}-2=0\Leftrightarrow x=4$
4 .
tìm x thuộc N biết x ⋮ 13 và 20 < x < 70
5 .
a) tìm ước lớn hơn 4 và nhỏ hơn 17 và 32
b) tìm x ϵ N biết ⋮ x và x < 14
c) tìm x thuộc N biết x : 6 ; 30 ⋮ x
4) Ta có: \(x\) ⋮ 13 vậy \(x\in B\left(13\right)\)
\(B\left(13\right)=\left\{0;13;26;39;52;65;78;91\right\}\)
Mà: \(20< x< 70\Rightarrow x\in\left\{26;39;52;65\right\}\)
5)
a) Ta có: \(\text{Ư}\left(32\right)=\left\{1;2;4;8;16;32\right\}\)
Vậy ước lớn hơn 4 và nhỏ hơn 17 của 32 là 8;16
b) Bạn viết lại đề
c) Ta có: x ⋮ 6 và 30 ⋮ x
Vậy x thuộc bội của 6 và ước của 30
Mà: \(Ư\left(30\right)=\left\{1;2;3;5;6;10;15;30\right\}\)
\(B\left(6\right)=\left\{0;6;12;18;24;30;36;42;...\right\}\)
\(\Rightarrow x\in\left\{6;30\right\}\)
1. tìm GTNN của A= x(x+2)(x+4)(x+6)+8
2. tìm GTLN của B=5+(1-x)(x+2)(x+3)(x+6)3
3.tìm GTNN của C=(x+3)4 + (x-7)4
4. Cho x>0. Tìm GTNN của P=\(\dfrac{4x^2+1}{2x}\)
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
3.
Đặt $x+3=a; 7-x=b$ thì $a+b=10$
$C=a^4+b^4$
Áp dụng BĐT Bunhiacopxky:
$(a^4+b^4)(1+1)\geq (a^2+b^2)^2$
$\Rightarrow C\geq \frac{(a^2+b^2)^2}{2}$
$(a^2+b^2)(1+1)\geq (a+b)^2=100$
$\Rightarrow a^2+b^2\geq 50$
$\Rightarrow C\geq \frac{50^2}{2}=1250$
Vậy $C_{\min}=1250$
Giá trị này đạt tại $a=b=5\Leftrightarrow x=2$
Cho hai đa thức:
\(A(x) = 4{x^4} + 6{x^2} - 7{x^3} - 5x - 6\) và \(B(x) = - 5{x^2} + 7{x^3} + 5x + 4 - 4{x^4}\).
a) Tìm đa thức M(x) sao cho \(M(x) = A(x) + B(x)\).
b) Tìm đa thức C(x) sao cho \(A(x) = B(x) + C(x)\).
a) \(M(x) = A(x) + B(x) \\= 4{x^4} + 6{x^2} - 7{x^3} - 5x - 6 - 5{x^2} + 7{x^3} + 5x + 4 - 4{x^4} \\=(4x^4-4x^4)+(-7x^3+7x^3)+(6x^2-5x^2)+(-5x+5x)+(-6+4)\\= {x^2} - 2.\)
b) \(A(x) = B(x) + C(x) \Rightarrow C(x) = A(x) - B(x)\)
\(\begin{array}{l}C(x) = A(x) - B(x)\\ = 4{x^4} + 6{x^2} - 7{x^3} - 5x - 6 - ( - 5{x^2} + 7{x^3} + 5x + 4 - 4{x^4})\\ = 4{x^4} + 6{x^2} - 7{x^3} - 5x - 6 + 5{x^2} - 7{x^3} - 5x - 4 + 4{x^4}\\ =(4x^4+4x^4)+(-7x^3-7x^3)+(6x^2+5x^2)+(-5x-5x)+(-6-4)\\= 8{x^4} - 14{x^3} + 11{x^2} - 10x - 10\end{array}\)
A=\(\left(\dfrac{x}{x+2}+\dfrac{x^3-8}{x^3+8}.\dfrac{x^2-2x+4}{4-x^2}\right):\dfrac{4}{x+2}\)
a) tìm đkxđ và rút gọn biểu thức A
b) tìm x để A=3
c) tìm x để a<1
d) tính giá trị của A khi |x| =\(\dfrac{1}{2}\)
Tìm điều kiện xác định của các biểu thức sau:
A = x + x + 1 ; B = x + 4 + x - 1
Tìm x, biết: x + x + 1 = 1 ; x + 4 + x - 1 = 2
(x^3/x^2-4)-(x^2+2x/x^2-4)-(2x-4/x^2-4) tìm x