Cho f(x)=\(\dfrac{x^2-1}{x}\) .Tính f(n)(x) với n≥2
Cho biểu thức \(f\left(x\right)=5^{\sqrt{1+\dfrac{1}{x^2}+\dfrac{1}{\left(x+1\right)^2}}}\), với x>0. Biết rằng f(1).f(2)...f(2020) = \(5^{\dfrac{m}{n}}\) với m, n là các số nguyên dương và phân số m/n tối giản. Chứng minh m-n^2 = -1
\(\sqrt{1+\dfrac{1}{x^2}+\dfrac{1}{\left(x+1\right)^2}}=\sqrt{\dfrac{x^2+\left(x+1\right)^2+x^2\left(x+1\right)^2}{x^2\left(x+1\right)^2}}=\sqrt{\dfrac{x^2\left(x+1\right)^2+2x^2+2x+1}{x^2\left(x+1\right)^2}}\)
\(=\sqrt{\dfrac{\left(x^2+x\right)^2+2\left(x^2+x\right)+1}{\left(x^2+x\right)^2}}=\sqrt{\dfrac{\left(x^2+x+1\right)^2}{\left(x^2+x\right)^2}}=\dfrac{x^2+x+1}{x^2+x}\)
\(=1+\dfrac{1}{x}-\dfrac{1}{x+1}\)
\(\Rightarrow f\left(1\right).f\left(2\right)...f\left(2020\right)=5^{1+1-\dfrac{1}{2}+1+\dfrac{1}{2}-\dfrac{1}{3}+...+1+\dfrac{1}{2020}-\dfrac{1}{2021}}\)
\(=5^{2021-\dfrac{1}{2021}}\)
\(\Rightarrow\dfrac{m}{n}=2021-\dfrac{1}{2021}=\dfrac{2021^2-1}{2021}\)
\(\Rightarrow m-n^2=2021^2-1-2021^2=-1\)
Cho F=\(\dfrac{1}{x^2-2x+1}-\left(\dfrac{x}{x^2-1}-\dfrac{1}{x\left(x^2-1\right)}\right)\):\(\dfrac{x^2-2x+1}{x+x^3}\)
a) Rút gọn F
b) Với giá trị của với x là nghiệm của phương trình (x-2)(x+1)=0
c) Tính giá trị của x để F =-1
d) Chứng minh rằng F<0
Cho biểu thức: F= \(\dfrac{x}{x-1}-\dfrac{4x^2+2}{1-x^2}-\dfrac{x-2}{x+1}\) với x≠+_1
a) chứng minh rằng: F=\(\dfrac{4x}{x-1}\)
b) tính giá trị của F khi lx+2l=1
c) tìm GTLN của biểu thức: K= F(x-1)-x2-2021
\(a,F=\dfrac{x^2+x+4x^2+2-x^2+3x-2}{\left(x-1\right)\left(x+1\right)}=\dfrac{4x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{4x}{x-1}\\ b,\left|x+2\right|=1\Leftrightarrow\left[{}\begin{matrix}x=1-2=-1\left(ktm\right)\\x=-1-2=-3\end{matrix}\right.\Leftrightarrow x=-3\\ \Leftrightarrow F=\dfrac{-12}{-4}=3\\ c,K=F\left(x-1\right)-x^2-2021=4x-x^2-2021\\ K=-\left(x^2-4x+4\right)-2017=-\left(x-2\right)^2-2017\le-2017\\ K_{max}=-2017\Leftrightarrow x=2\left(tm\right)\)
Cho f ( x ) = x ( x + 1 ) ( x + 2 ) ( x + 3 ) . . . ( x + n ) với n ∈ N * . Tính f'(0).
A. f''(0) = n!
B. f''(0) = n
C. f'(0) = 0
D. f''(0) = n ( n + 1 ) 2
Bài 1:Chứng tỏ các đa thức sau ko có nghiệm:
\(a, (x-5)^2+7 b, x^2 +2x+2 c, 5x^2-2x+1\)
Bài 2: Cho f(x) = \(2x^2-2x+5, g(x)= x^2 -x +4\)
Cmr: \(f(x) - g(x)=(x-1/2)^2\)
Bài 3: Cmr số (n-1)(n+1)(n+3) chia hết cho 48 với mọi số n lẻ.
Bài 4: Cho 44x + 33y=30y. Tính giá trị biểu thức M= \(\dfrac {-2}{3}x +\dfrac {5}{11}y\)
Bài 5: a, Cho f(x) thoả mãn: 2.f(x)-x.f(-x)=x+10 với mọi x thuộc R. Tính f(-2)
b, Cho hàm số f(x) xác định với mọi x, thoả mãn: \(f(x_1.x_2)=f(x_1).f(x_2) \)và f(2)=5.Tính f(8)
a) Cho 3 số a;b;c thỏa mãn \(\dfrac{a}{2015}=\dfrac{b}{2016}=\dfrac{c}{2017}\)
Tính giá trị của biểu thức B = 4(a-b)(b-c)-(c-a)2
b) Cho đa thức f(x) = a4x4+a3x3+a2x2+a1x+a0. Biết rằng f(1) =f(-1) và f(2)=f(-2). Chứng minh rằng f(x)=f(-x) với mọi x
c) Tìm các số nguyên dương x;y;z thỏa mãn \(\dfrac{x}{7}+\dfrac{y}{11}+\dfrac{z}{13}=\dfrac{946053}{999999}\)
b/ Theo đề bài thì ta có:
\(\left\{{}\begin{matrix}f\left(1\right)=f\left(-1\right)\\f\left(2\right)=f\left(-2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a_4+a_3+a_2+a_1+a_0=a_4-a_3+a_2-a_1+a_0\\16a_4+8a_3+4a_2+2a_1+a_0=16a_4-8a_3+4a_2-2a_1+a_0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a_3+a_1=0\\4a_3+a_1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a_3=0\\a_1=0\end{matrix}\right.\)
Ta có: \(f\left(x\right)-f\left(-x\right)=a_4x^4+a_3x^3+a_2x^2+a_1x+a_0-\left(a_4x^4-a_3x^3+a_2x^2-a_1x+a_0\right)\)
\(=2a_3x^3+2a_1x=0\)
Vậy \(f\left(x\right)=f\left(-x\right)\)với mọi x
a/ Áp dụng tính chất dãy tỷ số bằng nhau ta có:
\(\dfrac{a}{2015}=\dfrac{b}{2016}=\dfrac{c}{2017}=\dfrac{a-b}{-1}=\dfrac{b-c}{-1}=\dfrac{c-a}{2}\)
\(\Rightarrow c-a=-2\left(a-b\right)=-2\left(b-c\right)\)
Thế vào B ta được
\(B=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2\)
\(=4\left(a-b\right)\left(b-c\right)-\left[-2\left(a-b\right).\left(-2\right).\left(b-c\right)\right]\)
\(=4\left(a-b\right)\left(b-c\right)-4\left(a-b\right)\left(b-c\right)=0\)
cho đa thức
f(x)=x(x−1)(x+2)(ax+b)f(x)=x(x−1)(x+2)(ax+b)
a,xác định a,b để f(x)−f(x−1)=x(x+1)(2x+1)f(x)−f(x−1)=x(x+1)(2x+1)với mọi x
b, tính tổng S=1.2.3+2.3.5+.....+n(n+1)(2n+2)S=1.2.3+2.3.5+.....+n(n+1)(2n+2)theo n(với n nguyên dương)
a) cho \(\dfrac{2bz-3cy}{a}=\dfrac{3cx-az}{2b}=\dfrac{ay-2bx}{3c}\) chứng minh \(\dfrac{x}{a}=\dfrac{y}{2b}=\dfrac{z}{3c}\)
b) cho f (x)là hàm số xác định với mọi x thỏa mãn điều kiện f(x1.x2)=f(x1).f(x2) và f(2)=10.Tính f(32)
Câu a thì dài, câu b thì ngắn. Xin giải câu b trước để đi ngủ
b) Giải:
Vì \(f\left(x_1.x_2\right)=f\left(x_1\right).f\left(x_2\right)\) nên:
\(f\left(4\right)=f\left(2.2\right)=f\left(2\right).f\left(2\right)=10.10=100\)
\(f\left(16\right)=f\left(4.4\right)=f\left(4\right).f\left(4\right)=100.100=10000\)
\(f\left(32\right)=f\left(16.2\right)=f\left(16\right).f\left(2\right)=10000.10=100000\)
Vậy \(f\left(32\right)=100000\)
Cho hàm số f(x) xác định với mọi x khác 0 thỏa mãn
a, f(1)=1
b, f(\(\dfrac{1}{x}\))=\(\dfrac{1}{x^2}\).f(x)
c, f(x1+x2)=f(x1)+f(x2) với mọi x1,x2khác 0 và x1+x2 khác 0
C tỏ rằng f(\(\dfrac{5}{7}\))=\(\dfrac{5}{7}\)
Phần này khó chú ý nè bạn
Giải
Ta có f(x1+x2) = f(x1) + f(x2)
nên f(7) = f(3)+f(4)= f(2)+f(1) + f(2)+f(2) = f(1)+f(1)+f(1)+f(1)+f(1)+f(1)+f(1)=7
\(f\left(\dfrac{1}{7}\right)=\dfrac{1}{49}.f\left(7\right)=\dfrac{1}{49}.7=\dfrac{1}{7}\)
Ta có :\(f\left(\dfrac{5}{7}\right)=f\left(\dfrac{2}{7}\right)+f\left(\dfrac{3}{7}\right)=f\left(\dfrac{1}{7}\right)+f\left(\dfrac{1}{7}\right)+f\left(\dfrac{1}{7}\right)+f\left(\dfrac{2}{7}\right)=f\left(\dfrac{1}{7}\right)+f\left(\dfrac{1}{7}\right)+f\left(\dfrac{1}{7}\right)+f\left(\dfrac{1}{7}\right)+f\left(\dfrac{1}{7}\right)=\dfrac{1}{7}+\dfrac{1}{7}+\dfrac{1}{7}+\dfrac{1}{7}+\dfrac{1}{7}=\dfrac{5}{7}\)