Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đức Thắng
Xem chi tiết
Kiều Vũ Linh
25 tháng 5 2023 lúc 21:18

x⁸ + x⁴ + 1

= x⁸ + 2x⁴ + 1 - x⁴

= (x⁴ + 1)² - x⁴

= (x⁴ + 1)² - (x²)²

= (x⁴ + 1 + x²)(x⁴ + 1 - x²)

= (x⁴ + x² + 1)(x⁴ - x² + 1)

Nguyễn Laura
Xem chi tiết
Hyuga Jiro
7 tháng 8 2017 lúc 14:10

\(a,x^2-5x+4=x^2-4x-x+4=x\left(x-4\right)-\left(x-4\right)=\left(x-4\right)\left(x-1\right)\)

\(b,4x^2-4x-3=4x^2-2.2x.1+1-3-1=\left(2x-1\right)^2-4=\left(2x-1-2\right)\left(2x-1+2\right)=\left(2x-3\right)\left(2x+1\right)\)

kinokinalisa
Xem chi tiết
T.Ps
5 tháng 7 2019 lúc 15:49

#)Giải :

\(x^3-2x-4\)

\(=x^3+2x^2-2x^2+2x-4x-4\)

\(=x^3+2x^2+2x-2x^2-4x-4\)

\(=x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\)

\(=\left(x-2\right)\left(x^2+2x+2\right)\)

\(x^4+2x^3+5x^2+4x-12\)

\(=x^4+x^3+6x^2+x^3+x^2+6x-2x^2-2x-12\)

\(=x^2\left(x^2+x+6\right)+x\left(x^2+x+6\right)-2\left(x^2+x+6\right)\)

\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)

\(=\left(x^2+x+6\right)\left(x-1\right)\left(x+2\right)\)

zZz Cool Kid_new zZz
5 tháng 7 2019 lúc 15:54

Câu 1.

Đoán được nghiệm là 2.Ta giải như sau:

\(x^3-2x-4\)

\(=x^3-2x^2+2x^2-4x+2x-4\)

\(=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+2x+2\right)\)

kinokinalisa
5 tháng 7 2019 lúc 16:06

cảm ơn nha!

tanqr
Xem chi tiết
Nguyễn Hoàng Minh
8 tháng 10 2021 lúc 7:07

\(a,=\left(x-2\right)^2-y^2=\left(x-y-2\right)\left(x+y-2\right)\\ b,=4x^2\left(x^2+2x+1\right)=4x^2\left(x+1\right)^2\\ c,=xy^2\left(x^2-2xy+y^2\right)=xy^2\left(x-y\right)^2\\ d,=\left(x-y\right)\left(x+y\right)-7\left(x-y\right)=\left(x-y\right)\left(x+y-7\right)\\ e,=\left(5x-2y\right)\left(5x+2y\right)\\ f,=x^2+3x+4x+12=\left(x+3\right)\left(x+4\right)\\ i,=x^2+2x-7x-14=\left(x+2\right)\left(x-7\right)\)

Lê H.ly
Xem chi tiết
Nguyễn Hoàng Minh
14 tháng 11 2021 lúc 17:10

\(a,=x\left(x+y\right)+5\left(x+y\right)=\left(x+5\right)\left(x+y\right)\\ b,=x\left(y-x\right)-3\left(y-x\right)=\left(x-3\right)\left(y-x\right)\\ c,=18x-4x^3=2x\left(9-2x^2\right)\\ d,=\left(x-2\right)^2-4y^2=\left(x-2y-2\right)\left(x+2y-2\right)\\ e,=x^2-x-9x+9=\left(x-1\right)\left(x-9\right)\\ f,=4x^2-6x+2x-3=\left(2x-3\right)\left(2x+1\right)\)

hoàng minh vũ
Xem chi tiết
Lấp La Lấp Lánh
25 tháng 8 2021 lúc 15:40

a) \(x^2\left(x^2+4\right)-x^2-4=x^2\left(x^2+4\right)-\left(x^2+4\right)=\left(x^2+4\right)\left(x^2-1\right)=\left(x^2+4\right)\left(x-1\right)\left(x+1\right)\)

b) \(\left(x^2+x\right)^2+4x^2+4x-12=\left(x^2+x\right)^2+4\left(x^2+x\right)+4-16=\left(x^2+x+2\right)^2-4^2=\left(x^2+x+2-4\right)\left(x^2+x+2+4\right)=\left(x^2+x-2\right)\left(x^2+x+6\right)=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)

c) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=\left(x^2+7x+10\right)^2+2\left(x^2+7x+10\right)+1-25=\left(x^2+7x+11\right)^2-5^2=\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

Nhan Thanh
25 tháng 8 2021 lúc 15:53

a. \(x^2\left(x^2+4\right)-x^2-4\)

\(=x^2\left(x^2+4\right)-\left(x^2+4\right)\)

\(=\left(x^2-1\right)\left(x^2+4\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x^2+4\right)\)

b. \(\left(x^2+x\right)^2+4x^2+4x-12\)

\(=x^4+2x^3+5x^2+4x-12\)

\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)

c. \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\) (*)

Đặt \(t=x^2+7x+10\), ta được

(*) \(=t\left(t+2\right)-24\)

\(=t^2+2t-24\)

\(=\left(t-4\right)\left(t+6\right)\)

hay \(\left(x^2+7x+6\right)\left(x^2+7x+18\right)\)

 

Nguyễn Lê Phước Thịnh
26 tháng 8 2021 lúc 1:12

a: Ta có: \(x^2\left(x^2+4\right)-x^2-4\)

\(=\left(x^2+4\right)\left(x^2-1\right)\)

\(=\left(x^2+4\right)\left(x-1\right)\left(x+1\right)\)

b: Ta có: \(\left(x^2+x\right)^2+4x^2+4x-12\)

\(=\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)

\(=\left(x^2+x\right)^2+6\left(x^2+x\right)-2\left(x^2+x\right)-12\)

\(=\left(x^2+x-2\right)\left(x^2+x+6\right)\)

\(=\left(x^2+x+6\right)\left(x+2\right)\left(x-1\right)\)

c: Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+96\)

\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x^2+7x+16\right)\left(x+1\right)\left(x+6\right)\)

Mun SiNo
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 10 2021 lúc 21:31

a: \(x^2-y^2-x-y\)

\(=\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y-1\right)\)

f: \(x^3-5x^2-5x+1\)

\(=\left(x+1\right)\left(x^2-x+1\right)-5x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-6x+1\right)\)

Tkiet
Xem chi tiết
Toru
11 tháng 12 2023 lúc 18:40

a) $4x^2+4x+1$

$=(2x)^2+2\cdot2x\cdot1+1^2$

$=(2x+1)^2$

b) $x^2+6x-y^2+9$

$=(x^2+6x+9)-y^2$

$=(x^2+2\cdot x\cdot3+3^2)-y^2$

$=(x+3)^2-y^2$

$=(x+3-y)(x+3+y)$

$\text{#}Toru$

Nguyễn Lê Phước Thịnh
11 tháng 12 2023 lúc 18:40

a: \(4x^2+4x+1\)

\(=\left(2x\right)^2+2\cdot2x\cdot1+1^2\)

\(=\left(2x+1\right)^2\)

b: \(x^2+6x-y^2+9\)

\(=\left(x^2+6x+9\right)-y^2\)

\(=\left(x+3\right)^2-y^2\)

\(=\left(x+3+y\right)\left(x+3-y\right)\)

Phạm Văn Luu
Xem chi tiết
Trần Tuấn Hoàng
2 tháng 3 2022 lúc 20:20

-Đặt \(t=\left(x^2-x+1\right)\)

\(\left(x^2-x+1\right)^2-5x\left(x^2-x+1\right)+4x^2\)

\(=t^2-5xt+4x^2\)

\(=t^2-4xt-xt+4x^2\)

\(=t\left(t-4x\right)-x\left(t-4x\right)\)

\(=\left(t-4x\right)\left(t-x\right)\)

\(=\left(x^2-x+1-4x\right)\left(x^2-x+1-x\right)\)

\(=\left(x^2-5x+1\right)\left(x^2-2x +1\right)\)

\(=\left(x^2-5x+1\right)\left(x-1\right)^2\)