Cho (O) và một điểm M nằm ngoài đường tròn. Qua M kẻ hai đường thẳng, một đường cắt (O) tại A,B; đường còn lại cắt (O) tại C,D. c/m MA.MB=MC.MD
Cho đường tròn tâm O ,một điểm M nằm ngoài đường tròn.Từ M kẻ đường thẳng đi qua tâm O,cắt đường tròn tại hai điểm A,B (A nằm giữa M và B).Kẻ đường thẳng thứ hai đi qua M,cắt đường tròn tại hai điểm phân biệt C,D (C nằm giữa M và D. C khác A).ĐƯờng thẳng vuông góc với MA tại M cắt đường thẳng BC tại N,đường thẳng NA cắt đường tròn tại điểm thứ 2 là E.
a.Chứng minh tứ giác AMNC nội tiếp
b.Chứng minh DE vuông góc với MB
a: góc ACB=1/2*sđ cung AB=90 độ
=>ΔACN vuông cân tại C
góc ACN+góc AMN=180 độ
=>AMNC nội tiếp
b: AMNC nội tiếp
=>góc CNA=góc CMA=góc BMD
góc BNE=1/2(sđ cung BE-sđ cung AC)
góc DMB=1/2*(sđ cung BD-sđ cung AC)
=>sđ cung BD=sđ cung BE
=>B nằm trên trung trực của DE
Xét ΔADB và ΔAEB có
góc ADB=góc aEB
AB chung
DB=BE
=>ΔABD=ΔAEB
=>AD=AE
=>A nằm trên trung trực của DE
=>AB là trung trực của DE
=>DE vuông góc AB
Cho (O;R) và điểm A nằm ngoài đường tròn (O). Qua A vẽ tiếp tuyến AB tiếp xúc với đường tròn (O) tại B. Vẽ một đường thẳng qua A cắt đường tròn tại hai điểm M và N ( M nằm giữa A và N). Qua M kẻ đường thẳng song song với AB cắt BN tại E. Gọi I là trung điểm của ME. Vẽ dây BQ của đường tròn (O) sao cho BQ đi qua điểm I
a) Chứng minh hai tam giác BMI và tam giác BQM đồng dạng
b)Chứng minh tứ giác QIEN nội tiếp
c) Chứng minh BM.QN=BN.MQ
Cho đường tròn (O;R) và một điểm A nằm ngoài đường tròn. Kẻ một đường thẳng qua A và không đi qua tâm O, cắt đường tròn tại 2 điểm phân biệt M, N (M nằm giữa A và N). Từ A vẽ hai tiếp tuyến AB, AC với đường tròn (B, C là hai tiếp điểm). Đường thẳng BC cắt AO tại H. Gọi I là trung điểm của MN.
a) Chứng minh tứ giác ACOI là tứ giác nội tiếp.
b) Chứng minh OI.OE = OH.OA = AC2.
c) Tính theo R độ dài của OA biết diện tích của tứ giác ABOC bằng 3R2.
b bic làm bài này hok z
giúp mik vs ạ
cho đường tròn o r và điểm m nằm ngoài đường tròn .qua m kẻ hai tiếp tuyến ma,mb với đường tròn (0,r) (a,b là tiếp điểm ) đoạn thẳng om cắt đường thẳng ab tại điểm h và cắt đường tròn (0,r) tại I 1, chứng minh M,A,B,O cùng thuộc một đường tròn 2,kẻ đường kính A,B của đường tròn (O,R) Đoạn thẳng MD cắt đường tròn (O,R) tại C khác D chứng minh MA² =MH.MO=MC.MD
Mình làm tắt nha bạn không hiểu đâu thì hỏi lại nhé
a) MA, MB là tiếp tuyến
=> \(\widehat{OBM}=\widehat{OAM}=90^o\) (t/c tiếp tuyến)
=> \(\widehat{OBM}+\widehat{OAM}=180^o\)
mà 2 góc đối nhau
=> tứ giác AOBM nội tiếp
=> 4 điểm A, O, B, M cùng thuộc 1 đường tròn
b) Áp dụng hệ thức lượng vào tam giác OAM vuông tại A đường cao AH
=> \(AM^2=MH.MO\)
Áp dụng hệ thức lượng vào tam giác DAM vuông tại A đường cao AC
=> \(AM^2=MC.MD\)
=> \(AM^2=MH.MO=MC.MD\)
Cho đường tròn (O; R) và một điểm M cố định nằm ngoài đường tròn (O). Từ M kẻ các tiếp tuyến MA, MB tới (O) (A, B là các tiếp điểm). MO cắt AB tại H. Một đường thẳng d thay đổi đi qua M nhưng không đi qua O cắt đường tròn (O) tại hai điểm N, P (N nằm giữa M và P). Gọi I là trung điểm của NP.
a) Chứng minh bốn điểm M, A, I, O cùng thuộc một đường tròn.
b) Qua B kẻ đường thẳng song song với MO và cắt đường tròn (O) tại D. Chứng minh và AD là đường kính của (O).
c) Tiếp tuyến của (O) tại N và P cắt nhau tại F. Chứng minh đồng dạng và điểm F chuyển động trên một đường thẳng cố định khi đường thẳng d quay quanh M mà vẫn thỏa mãn các yêu cầu đề bài.
Câu a),b) tự làm nhé , mình chỉ giúp câu c) thôi .
OI vuông góc NP ( Do I là trung điểm của MP ) , OF vuông góc NP ( Do OF là đường trung trực của NP )
=> O,I,F thẳng hàng
Tam giác ONF vuông tại N , đường cao NI
=> ON^2 = OI.OF
Mà ON=OA
OA^2 = OH.OM
=> OH.OM=OI.OF
=> OH/OI=OF/OM
Xét tam giác OIM và tam giác OHF có
góc MOF chung
OH/OI=OF/OM
=> Tam giác OIM đồng dạng tam giác OHF
=> góc OHF=góc OIM (=90 độ )
OH vuông HF
mà OH vuông AB
=> A,B,F thẳng hàng
=> F nằm trên đường thẳng cố định AB khi đường thẳng d quay quanh M mà vẫn thỏa mãn các yêu cầu đề bài
Điều phải chứng minh
Kẻ hộ mk hình Cho đường tròn (O; R) và điểm A cố định nằm ngoài đường tròn. Một đường thẳng d đi qua A cắt đường tròn (O; R) tại B và C (BC không đi qua O, B nằm giữa A và C). Từ A kẻ các tiếp tuyến AM, AN tới đường tròn (M, N là hai tiếp điểm, M thuộc mặt phẳng bờ AC có chứa điểm O), gọi H là trung điểm của BC.
Cho đường tròn (O;R) và một điểm S nằm bên ngoài đường tròn. Kẻ các tiếp tuyến SA,SB của đường tròn (O;R) (với A,B là tiếp điểm). Đường thẳng a đi qua S (không đi qua tâm O) cắt đường tròn(O;R) tại hai điểm M,N (M nằm giữ S và N). a) CM: SO ⊥ AB b) Gọi I là trung điểm của MN và H là giao điểm của SO,AB ;hai đường thẳng OI và AB cắt nahu tại E.CM: OI.OE=R2 (vẽ hộ em hình luôn ạ)
a, Ta có SA = SB (tc tiếp tuyến cắt nhau )
OA = OB = R
Vậy OS là đường trung trực đoạn AB
=> SO vuông AB tại H
b, Vì I là trung điểm
=> OI vuông NS
Xét tứ giác IHSE ta có ^EHS = ^EIS = 900
mà 2 góc này kề, cùng nhìn cạnh ES
Vậy tứ giác IHSE nt 1 đường tròn
=> ^ESH = ^HIO ( góc ngoài đỉnh I )
Xét tam giác OIH và tam giác OSE có
^HIO = ^OSE (cmt)
^O_ chung
Vậy tam giác OIH ~ tam giác OSE (g.g)
\(\dfrac{OI}{OS}=\dfrac{OH}{OE}\Rightarrow OI.OE=OH.OS\)
Xét tam giác OAS vuông tại A ( do SA là tiếp tuyến với A là tiếp điểm), đường cao AH ta có
\(OA^2=OH.OS\)(hệ thức lượng)
\(\Rightarrow OA^2=R^2=OI.OE\)
Cho đường tròn (O) và một điểm M cố định không nằm trên đường tròn. Qua M kẻ hai đường thẳng . Đường thẳng thứ nhất cắt (O) tại A và B. Đường thẳng thứ hai cắt (O) tại C và D. Chứng minh MA.MB = MC.MD.
Hướng dẫn: Xét cả hai trường hợp điểm M nằm bên trong và bên ngoài đường tròn. Trong mỗi trường hợp, xét hai tam giác đồng dạng.
TH1: M nằm trong đường tròn.
là hai góc nội tiếp cùng chắn cung
⇒ MA.MB = MC.MD
TH2: M nằm ngoài đường tròn.
ΔMBC và ΔMDA có:
Kiến thức áp dụng
+ Góc nội tiếp chắn một cung có số đo bằng một nửa số đo của cung đó.
+ Hai góc nội tiếp chắn cùng một cung thì có số đo bằng nhau.
Cho đường tròn (O) và một điểm M cố định không nằm trên đường tròn. Qua M kẻ hai đường thẳng . Đường thẳng thứ nhất cắt (O) tại A và B. Đường thẳng thứ hai cắt (O) tại C và D. Chứng minh MA.MB = MC.MD.
Hướng dẫn: Xét cả hai trường hợp điểm M nằm bên trong và bên ngoài đường tròn. Trong mỗi trường hợp, xét hai tam giác đồng dạng.
TH1: M nằm trong đường tròn.
là hai góc nội tiếp cùng chắn cung
⇒ MA.MB = MC.MD
TH2: M nằm ngoài đường tròn.
ΔMBC và ΔMDA có: