Cho đường tròn (O; R) và một điểm M cố định nằm ngoài đường tròn (O). Từ M kẻ các tiếp tuyến MA, MB tới (O) (A, B là các tiếp điểm). MO cắt AB tại H. Một đường thẳng d thay đổi đi qua M nhưng không đi qua O cắt đường tròn (O) tại hai điểm N, P (N nằm giữa M và P). Gọi I là trung điểm của NP.
a) Chứng minh bốn điểm M, A, I, O cùng thuộc một đường tròn.
b) Qua B kẻ đường thẳng song song với MO và cắt đường tròn (O) tại D. Chứng minh và AD là đường kính của (O).
c) Tiếp tuyến của (O) tại N và P cắt nhau tại F. Chứng minh đồng dạng và điểm F chuyển động trên một đường thẳng cố định khi đường thẳng d quay quanh M mà vẫn thỏa mãn các yêu cầu đề bài.