Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Uyên
Xem chi tiết
Trên con đường thành côn...
14 tháng 8 2021 lúc 20:02

undefined

Nguyễn Lê Phước Thịnh
14 tháng 8 2021 lúc 22:49

a: \(4x^2-x-5=\left(4x-5\right)\left(x+1\right)\)

b: \(x^2-2x-15=\left(x-5\right)\left(x+3\right)\)

Nguyễn Laura
Xem chi tiết
minamoto shizuka
7 tháng 8 2017 lúc 9:34

a)\(x^2-5x+4\) 

\(=x^2-x-4x+4\)

\(=x\left(x-1\right)-4\left(x-1\right)\)

=\(\left(x-1\right)\left(x-4\right)\)

b)\(4x^2-4x-3\)

\(=4x^2+2x-6x-3\)

\(=2x\left(2x+1\right)-3\left(2x+1\right)\)

\(=\left(2x-3\right)\left(2x+1\right)\)

Hoàng Thảo
7 tháng 8 2017 lúc 9:38

a) \(x^2-5x+4\)

\(=x^2-4x-x+4\)

\(=\left(x^2-4x+4\right)-x\)

\(=\left(x-2\right)^2-x\)

\(=\left(x-2\right)^2-\left(\sqrt{x}\right)^2\)

\(=\left(x-2-\sqrt{x}\right)\left(x-2+\sqrt{x}\right)\)

b)  \(4x^2-4x-3\)

\(=4x^2-4x+1-4\)

\(=\left(2x+1\right)^2-2^2\)

\(=\left(2x+1-2\right)\left(2x+1+2\right)\)

\(=\left(2x-1\right)\left(2x+3\right)\)

kinokinalisa
Xem chi tiết
T.Ps
5 tháng 7 2019 lúc 15:49

#)Giải :

\(x^3-2x-4\)

\(=x^3+2x^2-2x^2+2x-4x-4\)

\(=x^3+2x^2+2x-2x^2-4x-4\)

\(=x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\)

\(=\left(x-2\right)\left(x^2+2x+2\right)\)

\(x^4+2x^3+5x^2+4x-12\)

\(=x^4+x^3+6x^2+x^3+x^2+6x-2x^2-2x-12\)

\(=x^2\left(x^2+x+6\right)+x\left(x^2+x+6\right)-2\left(x^2+x+6\right)\)

\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)

\(=\left(x^2+x+6\right)\left(x-1\right)\left(x+2\right)\)

zZz Cool Kid_new zZz
5 tháng 7 2019 lúc 15:54

Câu 1.

Đoán được nghiệm là 2.Ta giải như sau:

\(x^3-2x-4\)

\(=x^3-2x^2+2x^2-4x+2x-4\)

\(=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+2x+2\right)\)

kinokinalisa
5 tháng 7 2019 lúc 16:06

cảm ơn nha!

Triệu Việt Hà (Vịt)
Xem chi tiết
Akai Haruma
7 tháng 7 2021 lúc 20:29

a. $6x^2-11x=x(6x-11)$
b. $x^7+x^5+1=(x^7-x)+(x^5-x^2)+x+x^2+1$

$=x(x^6-1)+x^2(x^3-1)+(x^2+x+1)$
$=x(x^3-1)(x^3+1)+x^2(x^3-1)+(x^2+x+1)$
$=(x^3-1)(x^4+x+x^2)+(x^2+x+1)$

$=(x-1)(x^2+x+1)(x^4+x^2+x)+(x^2+x+1)$
$=(x^2+x+1)[(x-1)(x^4+x^2+x)+1]$

$=(x^2+x+1)(x^5-x^4+x^3-x+1)$

Akai Haruma
7 tháng 7 2021 lúc 20:34

c.

$x^8+x^4+1=(x^4)^2+2.x^4+1-x^4$

$=(x^4+1)^2-(x^2)^2$

$=(x^4+1-x^2)(x^4+1+x^2)$

$=(x^4+1-x^2)(x^4+2x^2+1-x^2)$

$=(x^4-x^2+1)[(x^2+1)^2-x^2]$

$=(x^4-x^2+1)(x^2+1-x)(x^2+1+x)$

d.

$x^3-5x+8-4=x^3-5x+4$

$=x^3-x^2+x^2-x-(4x-4)$

$=x^2(x-1)+x(x-1)-4(x-1)=(x-1)(x^2+x-4)$

e.

$x^5+x^4+1=(x^5-x^2)+(x^4-x)+x^2+x+1$

$=x^2(x^3-1)+x(x^3-1)+x^2+x+1$

$=(x^3-1)(x^2+x)+(x^2+x+1)$
$=(x-1)(x^2+x+1)(x^2+x)+(x^2+x+1)$

$=(x^2+x+1)[(x-1)(x^2+x)+1]$

$=(x^2+x+1)(x^3-x+1)$

 

 

hoàng minh vũ
Xem chi tiết
Lấp La Lấp Lánh
25 tháng 8 2021 lúc 15:40

a) \(x^2\left(x^2+4\right)-x^2-4=x^2\left(x^2+4\right)-\left(x^2+4\right)=\left(x^2+4\right)\left(x^2-1\right)=\left(x^2+4\right)\left(x-1\right)\left(x+1\right)\)

b) \(\left(x^2+x\right)^2+4x^2+4x-12=\left(x^2+x\right)^2+4\left(x^2+x\right)+4-16=\left(x^2+x+2\right)^2-4^2=\left(x^2+x+2-4\right)\left(x^2+x+2+4\right)=\left(x^2+x-2\right)\left(x^2+x+6\right)=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)

c) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=\left(x^2+7x+10\right)^2+2\left(x^2+7x+10\right)+1-25=\left(x^2+7x+11\right)^2-5^2=\left(x^2+7x+11-5\right)\left(x^2+7x+11+5\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

Nhan Thanh
25 tháng 8 2021 lúc 15:53

a. \(x^2\left(x^2+4\right)-x^2-4\)

\(=x^2\left(x^2+4\right)-\left(x^2+4\right)\)

\(=\left(x^2-1\right)\left(x^2+4\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x^2+4\right)\)

b. \(\left(x^2+x\right)^2+4x^2+4x-12\)

\(=x^4+2x^3+5x^2+4x-12\)

\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)

c. \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\) (*)

Đặt \(t=x^2+7x+10\), ta được

(*) \(=t\left(t+2\right)-24\)

\(=t^2+2t-24\)

\(=\left(t-4\right)\left(t+6\right)\)

hay \(\left(x^2+7x+6\right)\left(x^2+7x+18\right)\)

 

Nguyễn Lê Phước Thịnh
26 tháng 8 2021 lúc 1:12

a: Ta có: \(x^2\left(x^2+4\right)-x^2-4\)

\(=\left(x^2+4\right)\left(x^2-1\right)\)

\(=\left(x^2+4\right)\left(x-1\right)\left(x+1\right)\)

b: Ta có: \(\left(x^2+x\right)^2+4x^2+4x-12\)

\(=\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)

\(=\left(x^2+x\right)^2+6\left(x^2+x\right)-2\left(x^2+x\right)-12\)

\(=\left(x^2+x-2\right)\left(x^2+x+6\right)\)

\(=\left(x^2+x+6\right)\left(x+2\right)\left(x-1\right)\)

c: Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+96\)

\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x^2+7x+16\right)\left(x+1\right)\left(x+6\right)\)

Nhiều chỵn
Xem chi tiết
Đào Đức Mạnh
4 tháng 8 2015 lúc 21:36

=yz(x^2+5x-14)

=yz(x^2-2x+7x-14)

=yz[x(x-2)+7(x-2)

=yz(x-2)(x+7)

tanqr
Xem chi tiết
Nguyễn Hoàng Minh
8 tháng 10 2021 lúc 7:07

\(a,=\left(x-2\right)^2-y^2=\left(x-y-2\right)\left(x+y-2\right)\\ b,=4x^2\left(x^2+2x+1\right)=4x^2\left(x+1\right)^2\\ c,=xy^2\left(x^2-2xy+y^2\right)=xy^2\left(x-y\right)^2\\ d,=\left(x-y\right)\left(x+y\right)-7\left(x-y\right)=\left(x-y\right)\left(x+y-7\right)\\ e,=\left(5x-2y\right)\left(5x+2y\right)\\ f,=x^2+3x+4x+12=\left(x+3\right)\left(x+4\right)\\ i,=x^2+2x-7x-14=\left(x+2\right)\left(x-7\right)\)

Phạm Văn Luu
Xem chi tiết
Trần Tuấn Hoàng
2 tháng 3 2022 lúc 20:20

-Đặt \(t=\left(x^2-x+1\right)\)

\(\left(x^2-x+1\right)^2-5x\left(x^2-x+1\right)+4x^2\)

\(=t^2-5xt+4x^2\)

\(=t^2-4xt-xt+4x^2\)

\(=t\left(t-4x\right)-x\left(t-4x\right)\)

\(=\left(t-4x\right)\left(t-x\right)\)

\(=\left(x^2-x+1-4x\right)\left(x^2-x+1-x\right)\)

\(=\left(x^2-5x+1\right)\left(x^2-2x +1\right)\)

\(=\left(x^2-5x+1\right)\left(x-1\right)^2\)

võ nhựt trường
Xem chi tiết
Nguyễn Ngọc Anh Minh
20 tháng 8 2016 lúc 10:12

a/ \(x^2-4x+3=\left(x^2-x\right)-\left(3x-3\right)=x\left(x-1\right)-3\left(x-1\right)=\left(x-1\right)\left(x-3\right)\)

b/ \(3x^2-5x+2=\left(3x^2-3x\right)-\left(2x-2\right)=3x\left(x-1\right)-2\left(x-1\right)=\left(x-1\right)\left(3x-2\right)\)

Cold Wind
20 tháng 8 2016 lúc 10:13

\(x^2-4x+3\)

\(=x^2-3x-x-3\)

\(=x\left(x-1\right)-3\left(x-1\right)\)

\(=\left(x-3\right)\left(x-1\right)\)

\(3x^2-5x+2\)

\(=3x^2-3x-2x+2\)

\(=3x\left(x-1\right)-2\left(x-1\right)\)

\(=\left(3x-2\right)\left(x-1\right)\)

Nguyễn Huy Hoàng
20 tháng 8 2016 lúc 10:15

a/ x2-4x+3=x2-x-3x+3=x(x-1)-3(x-1)=(x-3)(x-1)

b/ 3x2-5x+2=3x2-3x-2x+2=3x(x-1)-2(x-1)=(3x-2)(x-1)