Cho a+b+c+d=0.CMR: \(a^3+b^3+c^3+d^3=3\left(b+c\right).\left(ad-bc\right)\)
Cho a+b+c+d= 0
CMR : \(a^3+b^3+c^3+d^3=3\left(b+c\right)\left(ad-bc\right)\)
Ta có :
\(a+b+c+d=0\)
\(\Rightarrow b+c=-\left(a+d\right)\)
\(\Rightarrow\left(b+c\right)^2=\left(a+d\right)^2\)
\(\Rightarrow\left(b+c\right)^2-\left(a+d\right)^2=0\)
\(\Rightarrow b^2+c^2+2bc-a^2-d^2-2ad=0\)
Lại có :
\(a^3+b^3+c^3+d^3\)
\(=\left(a+d\right)\left(a^2+d^2-ad\right)+\left(b+c\right)\left(b^2+c^2-bc\right)\)
\(=\left(b+c\right)\left(b^2+c^2-bc\right)-\left(b+c\right)\left(a^2+d^2-ad\right)\)
\(=\left(b+c\right)\left[\left(b^2+c^2-bc\right)-\left(a^2+d^2-ad\right)\right]\)
\(=\left(b+c\right)\left[\left(b^2+c^2+2bc-a^2-d^2-2ad\right)+3ad-3bc\right]\)
\(=\left(b+c\right)\left[0+3\left(ad-bc\right)\right]\)
\(=3\left(b+c\right)\left(ad-bc\right)\)
Vậy ...
Ta có : a + b +c + d = 0
=> a + d = - b - c
=> (a + d) = -(b + c)
=> (a + d)3 = -(b + c)3
a3 + 3a2d + 3ad2 + d3 = -(b3 + 3b2c + 3bc2 + c3)
a3 + 3a2d + 3ad2 + d3 = -b3 - 3b2c - 3bc2 - c3
a3 + b3 + c3 + d3 = -3a2d - 3ad2 - 3b2c - 3bc2
a3 + b3 + c3 + d3 = -3ad(a + d) - 3bc(b + c)
a3 + b3 + c3 + d3 = -3ad(-b - c) - 3bc(b + c)
a3 + b3 + c3 + d3 = 3ad(b + c) - 3bc(b + c)
a3 + b3 + c3 + d3 = 3(b + c)(ad - bc)
Cho \(a+b+c+d=0\)
CMR : \(a^3+b^3+c^3+d^3=3\left(b+c\right)\left(ad-bc\right)\)
Ta có :
\(a+b+c+d=0\)
\(\Rightarrow b+c=-\left(a+d\right)\)
\(\Rightarrow\left(b+c\right)^2=\left(a+d\right)^2\)
\(\Rightarrow\left(b+c\right)^2-\left(a+d\right)^2=0\)
\(\Rightarrow b^2+c^2+2bc-a^2-d^2-2ad=0\)
Lại có :
\(a^3+b^3+c^3+d^3\)
\(=\left(a+b\right)\left(a^2+d^2-ad\right)+\left(b+c\right)\left(b^2+c^2-bc\right)\)
\(=\left(b+c\right)\left(b^2+c^2-bc\right)-\left(b+c\right)\left(a^2+d^2-ad\right)\)
\(=\left(b+c\right)\left[\left(b^2+c^2-bc\right)\left(a^2+d^2-ad\right)\right]\)
\(=\left(b+c\right)\left[\left(b^2+c^2-bc-a^2-d^2-2ad\right)+3ad-3bc\right]\)
\(=\left(b+c\right)\left[0+3\left(ad-bc\right)\right]\)
\(=3\left(b+c\right)\left(ad-bc\right)\)
Cho a+b+c+d=0. Chứng minh: \(a^3+b^3+c^3+d^3=3.\left(b+c\right).\left(ad-bc\right)\)
Cho a+b+c+d=0. Chứng minh: \(a^3+b^3+c^3+d^3=3.\left(b+c\right).\left(ad-bc\right)\)
Ta có: a+b+c+d=0
\(\Leftrightarrow b+c=-\left(a+d\right)\)
\(\Leftrightarrow\left(b+c\right)^3=-\left(a+d\right)^3\)
\(\Leftrightarrow b^3+c^3+3bc\left(b+c\right)=-\left[a^3+d^3+3ad\left(a+d\right)\right]\)
\(\Leftrightarrow b^3+c^3+3bc\left(b+c\right)=-a^3-d^3-3ad\left(a+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3bc\left(b+c\right)-3ad\left(a+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3bc\left(b+c\right)-3ad\cdot\left[-\left(b+c\right)\right]\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3bc\left(b+c\right)+3ad\left(b+c\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(b+c\right)\left(ad-bc\right)\)(đpcm)
Cho a+b+c+d=0. Chứng minh: \(a^3+b^3+c^3+d^3=3.\left(b+c\right).\left(ad-bc\right)\)
Cho a + b + c + d = 0. Chứng minh rằng: \(a^3+b^3+c^3+d^3=3\left(b+c\right)\left(ad-bc\right)\)
Ta có: a+b+c+d=0
⇔\(a+d=-\left(b+c\right)\)
\(\Leftrightarrow\left(a+d\right)^3=-\left(b+c\right)^3\)
\(\Leftrightarrow a^3+d^3+3ad\left(a+d\right)=-\left[b^3+c^3+3bc\left(b+c\right)\right]\)
\(\Leftrightarrow a^3+d^3+3ad\left(a+d\right)=-b^3-c^3-3bc\left(b+c\right)\)
\(\Leftrightarrow a^3+d^3+b^3+c^3=-3ad\left(a+d\right)-3bc\left(b+c\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3ad\left(a+d\right)+3bc\left(a+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=\left(a+d\right)\left(-3ad+3bc\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=\left(a+d\right)\cdot3\cdot\left(-ad+bc\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-\left(b+c\right)\cdot3\cdot\left[-\left(ad-bc\right)\right]\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\cdot\left(b+c\right)\cdot\left(ad-bc\right)\)(đpcm)
1, Cho a, b, c thỏa mãn :
\(\left\{{}\begin{matrix}\left(a+b\right)\left(b+c\right)\left(c+a\right)=abc\\\left(a^3+b^3\right)\left(b^3+c^3\right)\left(c^3+a^3\right)=a^3b^3c^3\end{matrix}\right.\\ CMR:abc=0\)
2, a, CMR nếu x + y + z = 0 thì :
\(2\left(x^5+y^5+z^5\right)=5xyz\left(x^2+y^2+z^2\right)\)
b, Cho a, b,c, d thỏa mãn : a + b + c + d = 0
CMR : \(a^3+b^3+c^3+d^3=3\left(ab-cd\right)\left(c+d\right)\)
Mọi người giải giúp mk, đc bài nào hay bài ấy nhé!
2 ) b )
\(a+b+c+d=0\)
\(\Leftrightarrow a+b=-\left(c+d\right)\)
\(\Leftrightarrow\left(a+b\right)^3=-\left(c+d\right)^3\)
\(\Leftrightarrow a^3+b^3+3a^2b+3b^2a=-c^3-3c^2d-3d^2c-d^3\)
\(\Leftrightarrow a^3+b^3+3a^2b+3b^2a+c^3+3c^2d+3d^2c+d^3=0\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3a^2b-3b^2a-3c^2d-3d^2c\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3ab\left(a+b\right)-3cd\left(c+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3ab\left(c+d\right)-3cd\left(c+d\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(ab-cd\right)\left(c+d\right)\) \(\left(đpcm\right)\)
1,Cho \(a^2+b^2+c^2+3=2\left(a+b+c\right)\) .Cmr: \(a=b=c=1\)
2,Cho \(\left(a+b+c\right)^2=3\left(ab+ac+bc\right)\) .Cmr: \(a=b=c\)
3,Cho \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=\left(a+b-2c\right)^2+\left(b+c-2a\right)^2+\left(c+a-2b\right)^2\) .Cmr: \(a=b=c\)
4,Cho a,b,c,d là các số khác 0 và:
\(\left(a+b+c+d\right)\left(a-b-c+d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\) .Cmr: \(\dfrac{a}{c}=\dfrac{b}{d}\)
5,Cho \(x^2-y^2-z^2=0\) .Cmr: \(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(3x-5y\right)^2\)
HELP ME!mik cần gấp lắm rồi!Thank trước nhé!
4) Ta có : A=(a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d)
=> (a+d)2 - (b+c)2= (a-d)2 - (c-b)2
=> a2+ d2+ 2ad - b2- c2- 2bc=a2 + d2 - 2ad - c2-b2+2bc
Rút gọn ta được: 4ad = 4bc => ad = bc =>\(\dfrac{a}{c}=\dfrac{b}{d}\)
1) a2+b2+c2+3=2(a+b+c) =>(a-1)2+(b-1)2+(c-1)2=0
=> a-1=b-1=c-1=0 => a=b=c=1 =>đpcm
2) (a+b+c)2=3(ab+bc+ac) =>(a-b)2+(b-c)2+(c-a)2=0
=>a-b=b-c=c-a=0 =>a=b=c
chứng minh rằng:
Nếu a+b+c+d=0 thì \(a^3+b^3+c^3+d^3=3\left(b+c\right)\left(ad-bc\right)\)
Ta có : \(a+b+c+d=0\Leftrightarrow a+d=-\left(b+c\right)\)
\(\Leftrightarrow\left(a+d\right)^3=-\left(b+c\right)^3\)
\(\Leftrightarrow a^3+d^3+3ad\left(a+d\right)=-\left[c^3+b^3+3bc\left(b+c\right)\right]\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3ad\left(a+d\right)-3bc\left(b+c\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3ad\left(b+c\right)-3bc\left(b+c\right)\) (vì a + d = - b - c )
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(b+c\right)\left(ad-bc\right)\)