Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hạnh Lương
Xem chi tiết
Ngô Bảo Châu
Xem chi tiết
Akai Haruma
6 tháng 11 2023 lúc 18:54

Lời giải:
Áp dụng BĐT Cauchy-Schwarz:

$A=\frac{1}{xz}+\frac{1}{xy}=\frac{1}{x}(\frac{1}{y}+\frac{1}{z})\geq \frac{1}{x}.\frac{4}{y+z}$

$=\frac{4}{x(y+z)}=\frac{4}{x(2-x)}$

Áp dụng BĐT AM-GM:

$x(2-x)\leq \left(\frac{x+2-x}{2}\right)^2=1$

$\Rightarrow A\geq \frac{4}{1}=4$
Vậy $A_{\min}=4$. Giá trị này đạt tại $x=1; y=z=\frac{1}{2}$

Xem chi tiết
yeens
Xem chi tiết
Etermintrude💫
8 tháng 3 2021 lúc 21:06

undefined

Ngô Đức Duy
Xem chi tiết
Nguyễn Linh Chi
22 tháng 11 2019 lúc 22:43

Câu hỏi của Hoàng Thái Dương - Toán lớp 8 - Học toán với OnlineMath

Khách vãng lai đã xóa
Mai Thanh Tâm
Xem chi tiết
Akai Haruma
23 tháng 3 2017 lúc 0:50

Lời giải:

Đến thi HSG C3 còn không được phép sử dụng những BĐT nằm ngoài phạm vi kinh điển vậy mà một bài lớp 8 tại sao lại dùng đến những công cụ như thế kia? Bằng không hãy chứng minh nó trước khi sử dụng, nếu không bài làm của bạn là vô nghĩa.

Áp dụng BĐT Holder bậc 3:

BĐT Holder: Cho \(a,b,c,m,n,p,x,y,z>0\) thì có:

\((a^3+b^3+c^3)(m^3+n^3+p^3)(x^3+y^3+z^3)\geq (amx+bny+cpz)^3\)

Cách CM: Áp dụng BĐT AM-GM:

\(\frac{a^3}{a^3+b^3+c^3}+\frac{m^3}{m^3+n^3+p^3}+\frac{x^3}{x^3+y^3+z^3}\geq \frac{3axm}{\sqrt[3]{(a^3+b^3+c^3)(m^3+n^3+p^3)(x^3+y^3+z^3)}}\)

Thức hiện tương tự với các phân thức dạng trên và cộng lại ta được đpcm

Quay lại bài toán và áp dụng:

Ta có \(\left(\frac{x}{y^2}+\frac{y}{z^2}+\frac{z}{x^2}\right)\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)(1+1+1)\geq \left(\frac{1}{y}+\frac{1}{z}+\frac{1}{x}\right)^3\)

\(\Leftrightarrow \left(\frac{x}{y^2}+\frac{y}{z^2}+\frac{z}{x^2}\right).3\geq \left(\frac{xy+yz+xz}{xyz}\right)^3\) \((1)\)

Ta biết BĐT quen thuộc sau \((xy+yz+xz)^2\geq 3xyz(x+y+z)\) (AM-GM)

\(\Rightarrow (xy+yz+xz)^2\geq 3(xyz)^2\rightarrow \frac{xy+yz+xz}{xyz}\geq \sqrt{3}\) \((2)\)

\((1),(2)\Rightarrow \frac{x}{y^2}+\frac{y}{z^2}+\frac{z}{x^2}\geq \sqrt{3}\)

Dấu bằng xảy ra khi \(x=y=z=\sqrt{3}\)

Lightning Farron
22 tháng 3 2017 lúc 17:45

Dự đoán khi \(x=y=z=\sqrt{3}\) ta tìm được \(S=\sqrt{3}\)

Vậy ta sẽ chứng minh nó là giá trị nhỏ nhất của \(S\)

Tức là ta cần chứng minh \(\Sigma\dfrac{x}{y^2}\ge\sqrt{\dfrac{3\left(x+y+z\right)}{xyz}}\)

Thật vậy, \(\left(x,y,z\right)\)\(\left(\dfrac{1}{x^2,},\dfrac{1}{y^2},\dfrac{1}{z^2}\right)\) là các số đối đã được sắp xếp lại

Vì vậy theo BĐT Rearrangement ta có:

\(\sum\frac{x}{y^2}=x\cdot\frac{1}{y^2}+y\cdot\frac{1}{z^2}+z\cdot\frac{1}{x^2}\geq x\cdot\frac{1}{x^2}+y\cdot\frac{1}{y^2}+z\cdot\frac{1}{z^2}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}.\)

Vậy ta còn phải chứng minh \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq\sqrt{\frac{3(x+y+z)}{xyz}}\)
Hay \(xy+xz+yz\geq\sqrt{3xyz(x+y+z)}\)

Sau khi bình phương và biến đổi 2 vế ta có \(\sum z^2(x-y)^2\geq0\)

Lightning Farron
21 tháng 3 2017 lúc 23:33

Hint: Min=x=y=z=1,73205... mai mình giải cho giờ hẵng bt kq đã !!

Lê Song Phương
Xem chi tiết
Tô Hoàng Long
10 tháng 2 2023 lúc 19:23

không biết :))))

nhu Quynh
Xem chi tiết
alibaba nguyễn
24 tháng 7 2017 lúc 13:43

Cái đề thế này ah

\(\frac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

Vì \(\hept{\begin{cases}x\ge0\\y\ge0\\z\ge0\end{cases}}\)

\(\Rightarrow\frac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\ge0\)

Rau
24 tháng 7 2017 lúc 13:58

-_- Làm như thế để chết nhắm :v
Dấu = xảy ra x=y=z=0 => Hỏng .
@Aliba...

Trần Đình Thuyên
24 tháng 7 2017 lúc 14:43

\(\frac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

áp dụng BĐT cô-si ta có :

\(x+y\ge2\sqrt{xy}\)

\(y+z\ge2\sqrt{yz}\)

\(z+x\ge2\sqrt{zx}\)

nhân vế với vế ta có 

\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8\sqrt{x^2y^2z^2}\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)

\(\Leftrightarrow\frac{xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\ge\frac{xyz}{8xyz}=\frac{1}{8}\)

vậy GTNN là \(\frac{1}{8}\) khi và chỉ khi \(x=y=z=1\)

:)

hello7156
Xem chi tiết