\(\left(x+y\right)\left(y+z\right)=xy+xz+y^2+yz=y\left(x+y+z\right)+xz\)
\(=y.\frac{1}{xyz}+xz=\frac{1}{xz}+xz\ge2\)
\(\left(x+y\right)\left(y+z\right)=xy+xz+y^2+yz=y\left(x+y+z\right)+xz\)
\(=y.\frac{1}{xyz}+xz=\frac{1}{xz}+xz\ge2\)
Tìm GTNN của A=(x+y)(x+z). Biết x,y,z >0 và xyz(x+y+z)=1
cho x, y, z>0 và xyz=1
Tìm gtnn của P=(x+y)(y+z)(z+x)-2(x+y+z)
tìm GTNN xyz /[x+y]nhân[y+z]nhân[x+z] biết x,y,z>=0
Cho x,y,z > 0 thỏa Đk : (x+y+z)xyz =1 Tìm GTNN của BT sau :
P = (x+y)(x+z)
Cho x,y,z > 0 thỏa Đk : (x+y+z)xyz =1 Tìm GTNN của BT sau :
P = (x+y)(x+z)
Cho x,y,z>0 và xyz=1. Tìm GTNN của M = \(\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{z+x+1}\)
Tìm GTNN của A = (x + y)(x + z) với x, y, z > 0 , xyz(x + y + z) = 1.
Cho x,y,z > 1 thỏa mãn điều kiện x + y + z = xyz. Tìm GTNN của biểu thức \(A=\frac{y-2}{x^2}+\frac{z-2}{y^2}+\frac{x-2}{z^2}\)
Cho x,y,z>0 và xyz=1. Tìm GTNN của Q = \(\dfrac{xy}{z^2\left(x+y\right)}+\dfrac{yz}{x^2\left(y+z\right)}+\dfrac{zx}{y^2\left(x+z\right)}\)