Tìm giá trị nhỏ nhất của biểu thức
A=|x-2018| + |x-1|
Bài 1: Tìm giá trị nhỏ nhất của biểu thức
a, M= x2-10x+3
b, N= x2-x+2
c, P=3x2-12x
Bài 2: Tìm giá trị nhỏ nhất của biểu thức
a, M= 2x2-4x+3
b, N= x2-4x+5+y2+2y2
MONG MN GIÚP ĐỠ :3
Bài 1:
a: \(M=x^2-10x+3\)
\(=x^2-10x+25-22\)
\(=\left(x^2-10x+25\right)-22\)
\(=\left(x-5\right)^2-22>=-22\forall x\)
Dấu '=' xảy ra khi x-5=0
=>x=5
b: \(N=x^2-x+2\)
\(=x^2-x+\dfrac{1}{4}+\dfrac{7}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi x-1/2=0
=>x=1/2
c: \(P=3x^2-12x\)
\(=3\left(x^2-4x\right)\)
\(=3\left(x^2-4x+4-4\right)\)
\(=3\left(x-2\right)^2-12>=-12\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
Tìm giá trị nhỏ nhất của biểu thức
A = x + \(\dfrac{9}{x-1}\) + 3 với x>1
Dúp mikk với hihi
\(A=x-1+\dfrac{9}{x-1}+4\ge2\sqrt{\dfrac{9\left(x-1\right)}{x-1}}+4=10\)
\(A_{min}=10\) khi \(x=4\)
\(A=x+\frac{9}{x-1}+3\Leftrightarrow x-1+\frac{9}{x-1}+3\)
Áp dụng cosi 2 số đầu ta được :
\(x-1+\frac{9}{x-1}\ge2\sqrt{\left(x-1\right)\frac{9}{x-1}}=6\)
Dễ dàng suy ra : \(A\ge3+6=9\)
Dấu ''='' xảy ra <=> \(x-1=\frac{9}{x-1}\Leftrightarrow\left(x-1\right)^2=9\)
TH1 : \(x-1=3\Leftrightarrow x=4\)( chọn )
TH2 : \(x-1=-3\Leftrightarrow x=-2\)( bỏ vì x > 1 ) theo giả thiết
Vậy GTNN A là 9 <=> x = 4
bài 1 tìm giá trị nhỏ nhất của biểu thức
A= (x-3)^2+(11-x)^2
mình cần gấp 9h tối nay ạ
Ta có: \(A=\left(x-3\right)^2+\left(11-x\right)^2\)
\(=x^2-6x+9+x^2-22x+121\)
\(=2x^2-28x+130\)
\(=2\left(x^2-14x+49+16\right)\)
\(=2\left(x-7\right)^2+32\ge32\forall x\)
Dấu '=' xảy ra khi x=7
Tìm giá trị nhỏ nhất của biểu thức: |x-5|+120
Tìm giá trị lớn nhất của biểu thức: 2018-(x-1)^2
Ta có :
\(\left(x-1\right)^2\ge0\)
\(\Rightarrow\)\(2018-\left(x-1\right)^2\le2018\)
Dấu "=" xảy ra khi và chỉ khi \(\left(x-1\right)^2=1\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}}\)
Vậy GTLN của biểu thức \(2018-\left(x-1\right)^2\) là \(2018\) khi \(x=0\) hoặc \(x=2\)
Chúc bạn học tốt ~
Ta có :
\(\left|x-5\right|\ge5\)
\(\Rightarrow\)\(\left|x-5\right|+120\ge120\)
Dấu "=" xảy ra khi và chỉ khi \(\left|x-5\right|=0\)
\(\Leftrightarrow\)\(x-5=0\)
\(\Leftrightarrow\)\(x=5\)
Vậy GTNN của biểu thức \(\left|x-5\right|+120\) là \(120\) khi \(x=5\)
Chúc bạn học tốt ~
Tìm giá trị nhỏ nhất của các biểu thức
a. A = 4x2 + 4x + 11
b. B = (x - 1) (x + 2) (x + 3) (x + 6)
c. C = x2 - 2x + y2 - 4y + 7
Bài 1: Tìm giá trị nhỏ nhất của các biểu thức
a ) A= x2 – 2x+5
b) B= x2 –x +1
c) C= ( x -1). ( x +2). ( x+3). ( x+6)
d) D= x2 + 5y2 – 2xy+ 4y+3
Bài 2: Tìm giá trị lớn nhất của các biểu thức sau:
a) A= -x2 – 4x – 2
b) B= -2x2 – 3x +5
c) C= ( 2- x). ( x +4)
d) D= -8x2 + 4xy - y2 +3
Bài 3 : Chứng minh rằng các giá trị của các biểu thức sau luôn dương với mọi giá trị của biến
a) A= 25x – 20x+7
b) B= 9x2 – 6xy + 2y2 +1
c) E= x2 – 2x + y2 + 4y+6
d) D= x2 – 2x +2
Giúp mình nha. Cần gấp ạ <Chi tiết nha>
Bài 3:
a) Ta có: \(A=25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)
d) Ta có: \(D=x^2-2x+2\)
\(=x^2-2x+1+1\)
\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)
Bài 1:
a) Ta có: \(A=x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x=1
b) Ta có: \(B=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
với giá trị nào của x,y yhif biểu thức A=|x-y|+|x+1|+2018 đạt giá trị nhỏ nhất tìm giá trị nhỏ nhất đó
ta có
\(\left|x-y\right|+\left|x+1\right|\ge0\)với mọi x,y
\(\Rightarrow\left|x-y\right|+\left|x+1\right|+2018\ge2018\)với mọi x,y
dấu = sảy ra <=>\(\left|x-y\right|+\left|x+1\right|=0\)mà \(\left|x-y\right|\ge0 VS \left|x+1\right|\ge0\)=>\(\left|x-y\right|=0 VS \left|x+1\right|=0\Leftrightarrow x-y=0 VS x+1=0\Leftrightarrow x=-1 VS y=-1\)
cho biểu thức
A=(\(\dfrac{x\sqrt{x}-x}{x-1}+\dfrac{4\sqrt{x}}{x+\sqrt{x}}\)) : \(\dfrac{\sqrt{x}}{\sqrt{x}+1}\) ( với \(x\ge0,x\ne1\) )
a, rút gọn
b, tìm giá trị nhỏ nhất của biểu thức A
Với \(x-2018>0\Leftrightarrow x>2018\):
\(A=x-2018+x-1=2x-2019>2.2018-2019=2017\)
Với \(x-2018\le0\Leftrightarrow x\le2018\):
\(A=2018-x+x-1=2017\)
Vậy \(minA=2017\)đạt tại \(x\le2018\).
Tìm giá trị nhỏ nhất của biểu thức
A= x2 - 5x + 1
Ta có:A=x2-5x+1=\(\left(x^2-2.\dfrac{5}{2}x+\dfrac{25}{4}\right)-\dfrac{25}{4}+1=\left(x-\dfrac{5}{4}\right)^2-\dfrac{21}{4}\)
Vì \(\left(x-\dfrac{5}{4}\right)^2\ge0\)
⇒ \(A\ge-\dfrac{21}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{5}{2}\)