Tìm giá trị nhỏ nhất của biểu thức :
A= (x+10)^2 + (y-10)^2 = 2010
B=(3x-y)^2 + (2x -1)=7
Bài 1 Tìm giá trị nhỏ nhất của mỗi biểu thức
a,A=(x + 10)2+(y-10)2+2010
b,B=(3x-y)2+/2x-1/ =7
Lưu ý:/2x-1/ là giá trị tuyệt đối
Bài 2 Tìm giá trị lớn nhất của mỗi biểu thức
a,C=-2(x+13)2+\(\sqrt{2}\)
b,D=\(\frac{4}{\left(x-3\right)^2+20}\)
Tìm giá trị nhỏ nhất của mỗi biểu thức
A)(x+10)mũ 2 +(y-10)mũ 2+2010
B)(3x-y)mũ 2+|2x-1|+7
a, cho x, y là 2 số thoả mãn (2x - y + 7)\(^{2022}\) + |x - 1|\(^{2023}\) ≤ 0. Tính giá trị của biểu thức: P = x\(^{2023}\) + (y - 10)\(^{2023}\)
b, Tìm số tự nhiên x, y biết 25 - y\(^2\) = 8(x = 2023)\(^2\)
c, Tìm giá trị nhỏ nhất của biểu thức: P = (|x - 3| + 2)\(^2\) + |y + 3| + 2019
d, Tìm cặp số nguyên x, y biết: (2 - x)(x + 1) = |y + 1|
a: \(\left(2x-y+7\right)^{2022}>=0\forall x,y\)
\(\left|x-1\right|^{2023}>=0\forall x\)
=>\(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}>=0\forall x,y\)
mà \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}< =0\forall x,y\)
nên \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}=0\)
=>\(\left\{{}\begin{matrix}2x-y+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x+7=9\end{matrix}\right.\)
\(P=x^{2023}+\left(y-10\right)^{2023}\)
\(=1^{2023}+\left(9-10\right)^{2023}\)
=1-1
=0
c: \(\left|x-3\right|>=0\forall x\)
=>\(\left|x-3\right|+2>=2\forall x\)
=>\(\left(\left|x-3\right|+2\right)^2>=4\forall x\)
mà \(\left|y+3\right|>=0\forall y\)
nên \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4\forall x,y\)
=>\(P=\left(\left|x-3\right|+2\right)^2+\left|y-3\right|+2019>=4+2019=2023\forall x,y\)
Dấu '=' xảy ra khi x-3=0 và y-3=0
=>x=3 và y=3
Bài 1 : Cho biểu thức :
B = 15 - 3x - 3y
a) Tính giá trị của biểu thức tại : x + y - 5 = 0
b) Tìm x biết giá trị của biểu thức là 10 khi y = 2
Bài 2 : Tìm x biết :
a) 3x2 - 7 = 5
b) 3x - 2x2 = 0
c) 8x2 + 10x + 3 = 0
Bài 5 : Tìm giá trị của biểu thức A = x + y - 10 biết /1/ = 2 và /y/ = 1
bài 1 :
B=15-3x-3y
a) x+y-5=0
=>x+y=-5
B=15-3x-3y <=> B=15-3(x+y)
Thay x+y=-5 vào biểu thức B ta được :
B=15-3(-5)
B=15+15
B=30
Vậy giá trị của biểu thức B=15-3x-3y tại x+y+5=0 là 30
b)Theo đề bài ; ta có :
B=15-3x-3.2=10
15-3x-6=10
15-3x=16
3x=-1
\(x=\frac{-1}{3}\)
Bài 2:
a)3x2-7=5
3x2=12
x2=4
x=\(\pm2\)
b)3x-2x2=0
=> 3x=2x2
=>\(\frac{3x}{x^2}=2\)
=>\(\frac{x}{x^2}=\frac{2}{3}\)
=>\(\frac{1}{x}=\frac{2}{3}\)
=>\(3=2x\)
=>\(\frac{3}{2}=x\)
c) 8x2 + 10x + 3 = 0
=>\(8x^2-2x+12x-3=0\)
\(\Rightarrow\left(2x+3\right)\left(4x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+3=0\\4x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-3\\4x=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-3}{2}\\x=\frac{1}{4}\end{cases}}}\)
vậy \(x\in\left\{-\frac{3}{2};\frac{1}{4}\right\}\)
Bài 5 đề sai vì |1| không thể =2
Tim giá trị nhỏ nhất của các biểu thức sau
A=(2x-7)^4
B=(x+1)^10 +(y-2)^20 +7
C=(3x-4)^100 +(5y+1)^50 -20
D=(2x+3)^20 +(3y-4)^10 +100^0
E=(x-y)^50 +(y-2)^60 +3
Trả lời:
A = ( 2x - 7 )4
Ta có: \(\left(2x-7\right)^4\ge0\forall x\)
Dấu "=" xảy ra khi 2x - 7 = 0 <=> 2x = 7 <=> x = 7/2
Vậy GTNN của A = 0 khi x = 7/2
B = ( x + 1 )10 + ( y - 2 )20 + 7
Ta có: \(\left(x+1\right)^{10}\ge0\forall x;\left(y-2\right)^{20}\ge0\forall y\)
\(\Leftrightarrow\left(x+1\right)^{10}+\left(y-2\right)^{20}\ge0\forall x;y\)
\(\Leftrightarrow\left(x+1\right)^{10}+\left(y-2\right)^{20}+7\ge7\forall x;y\)
Dấu "=" xảy ra khi x + 1 = 0 <=> x = -1 và y - 2 = 0 <=> y = 2
Vậy GTNN của B = 7 khi x = -1 và y = 2
C = ( 3x - 4 )100 + ( 5y + 1 )50 - 20
Ta có: \(\left(3x-4\right)^{100}\ge0\forall x;\left(5y+1\right)^{50}\ge0\forall y\)
\(\Leftrightarrow\left(3x-4\right)^{100}+\left(5y+1\right)^{50}\ge0\forall x;y\)
\(\Leftrightarrow\left(3x-4\right)^{100}+\left(5y+1\right)^{50}-20\ge-20\forall x;y\)
Dấu "=" xảy ra khi 3x - 4 = 0 <=> x = 4/3 và 5y + 1 = 0 <=> y = -1/5
Vậy GTNN của C = -20 khi x = 4/3 và y = -1/5
D = ( 2x + 3 )20 + ( 3y - 4 )10 + 1000
Ta có: \(\left(2x+3\right)^{20}\ge0\forall x;\left(3y-4\right)^{10}\ge0\forall y\)
\(\Leftrightarrow\left(2x+3\right)^{20}+\left(3y-4\right)^{10}\ge0\forall x;y\)
\(\Leftrightarrow\left(2x+3\right)^{20}+\left(3y-4\right)^{10}+100^0\ge1\forall x;y\)
Dấu "=" xảy ra khi 2x + 3 = 0 <=> x = -3/2 và 3y - 4 = 0 <=> y = 4/3
Vậy GTNN của D = 1 khi x = -3/2 và y = 4/3
E = ( x - y )50 + ( y - 2 )60 + 3
Ta có: \(\left(x-y\right)^{50}\ge0\forall x;y\); \(\left(y-2\right)^{60}\ge0\forall y\)
\(\Leftrightarrow\left(x-y\right)^{50}+\left(y-2\right)^{60}\ge0\forall x;y\)
\(\Leftrightarrow\left(x-y\right)^{50}+\left(y-2\right)^{60}+3\ge3\forall x;y\)
Dấu "=" xảy ra khi x - y = 0 <=> x = y và y - 2 = 0 <=> y = 2
Vậy GTNN của E = 3 khi x = y = 2
Bài 1 :
a ) Tìm giá trị nhỏ nhất của biểu thức :
M = x^2+y^2-x+6y+10
b ) Tìm giá trị lớn nhất của biểu thức :
1 ) A=4x-x^2+3
2 ) B=x-x^2
3 ) N=2x-2x^2-5
a/ \(M=x^2+y^2-x+6y+10=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+10-\frac{1}{4}-9\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Suy ra Min M = 3/4 <=> (x;y) = (1/2;-3)
b/
1/ \(A=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Suy ra Min A = 7 <=> x = 2
2/ \(B=x-x^2=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Suy ra Min B = 1/4 <=> x = 1/2
3/ \(N=2x-2x^2-5=-2\left(x^2-x+\frac{1}{4}\right)-5+\frac{1}{2}=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\)
\(\ge-\frac{9}{2}\)
Suy ra Min N = -9/2 <=> x = 1/2
1. Tìm giá trị nhỏ nhất của biểu thức
a) A = | x + 5 | = 10
b) B = | 3 - x | + 5
c) C = | x + 1 | + | y + 4 |
d) D = ( x + 2 )2 = 15
2. Tìm giá trị lớn nhất của biểu thức
a) A = 15 - | x + 8 |
b) B = - 10 - | 2x + 10 |
c) C = 1 - | x + 3 | - | y + 5 |
d) D = -2 - ( x + 7 )
[ nhanh mik tick nhé :) ]
Sửa đề:
A=/x+5/+10
Ta có: /x+5/>= 0 với mọi x>=0
=> A=/x+5/+10 >= 10
=> Amin=10. Dấu "=" xảy ra <=> x+5=0<=> x=-5
Vậy...
\(\text{a) }A=\left|x+5\right|+10\)
\(\text{Vì }\left|x+5\right|\ge0\forall x\)
\(\Rightarrow A=\left|x+5\right|+10\ge10\)
\(\text{Dấu ''='' xảy ra khi :}\)
\(\left|x+5\right|=0\)
\(\Rightarrow x=-5\)
\(\text{Vậy Min}_A=10\Leftrightarrow x=-5\)
\(\text{b) }\left|3-x\right|+5\)
\(\text{Vì }\left|3-x\right|\ge0\forall x\)
\(\Rightarrow\left|3-x\right|+5\ge5\)
\(\text{Dấu ''='' xảy ra khi :}\)
\(\left|3-x\right|=0\)
\(\Rightarrow x=3\)
\(\text{Vậy Min}_B=5\Leftrightarrow x=3\)
\(\text{d) }D=\left(x+2\right)^2+15\)
\(\text{Vì ( x + 2 )}^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+15\ge15\)
\(\text{Dấu ''='' xảy ra khi :}\)
\(\left(x+2\right)^2=0\)
\(\Rightarrow x+2=0\)
\(\Rightarrow x=-2\)
\(C=\left|x+1\right|+\left|y+4\right|\)
Ta có +) \(\left|x+1\right|\ge0\).Dấu "=" xảy ra \(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
+)\(\left|y+4\right|\ge0\).Dấu "=" xảy ra \(\Leftrightarrow y+4=0\Leftrightarrow y=-4\)
\(\Rightarrow B=\left|x+1\right|+\left|y+2\right|\ge0\)
\(\Rightarrow minB=0\Leftrightarrow\hept{\begin{cases}x=-1\\y=-4\end{cases}}\)
P/s: ko chắc nha
Bài 10. Tìm giá trị lớn nhất hoặc giá trị nhỏ nhất của các biểu thức sau:
a) x^2 + x+1 b) 2 + x - x^2 c) x^2 - 4x + 1
d) 4x^2 + 4x +11 e) 3x^2 - 6x + 1 f) x^2 -2x +y^2 -4y +6
g) h(h +1)(h +2)(h+3)
a: Ta có: \(x^2+x+1\)
\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)
b: Ta có: \(-x^2+x+2\)
\(=-\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{9}{4}\right)\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
1. Tìm các giá trị nguyên của x để các biểu thức sau có giá trị lớn nhất
a. A=1/7-x b.B=27-2x/12-X
2.Tìm các giá trị nguyên của x để các biểu thức sau có giá trị nhỏ nhất
a. A=1/x-3 b. B= 7-x/x-5 c. C= 5x-19/x-4
3.Tìm giá trị nhỏ nhất của các biếu thức sau
a. A=x^4+3x^2 +2 b. B=(x^4+5)^2 c. C=(x-1)^2+(y+2)^2
4.Tìm giá trị lớn nhất của các biểu thức sau
a. A=5-3(2x-1)^2 b.B=1/2(x-1)^2+3 c. C=x^2+8/x^2+2