Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Anh Thư
Xem chi tiết
Thảo Lê Phương
28 tháng 11 2017 lúc 21:01

g,

\(\dfrac{3x-2y}{5}=\dfrac{2z-5x}{3}=\dfrac{5y-3z}{2}\)

\(\Rightarrow\dfrac{15x-10y}{25}=\dfrac{6z-15x}{9}=\dfrac{10y-6z}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\dfrac{15x-10y}{25}=\dfrac{6z-15x}{9}=\dfrac{10y-6z}{4}=\dfrac{15x-10y+6z-15x+10y-6z}{25+9+4}=0\)\(\Rightarrow3x-2y=2z-5x=5y-3z=0\)

* 3x - 2y = 0 \(\Rightarrow3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\)

* 2z - 5x = 0 \(\Rightarrow2z=5x\Rightarrow\dfrac{x}{2}=\dfrac{z}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y+z}{2+3+5}=\dfrac{50}{10}=5\)

\(\cdot\dfrac{x}{2}=5\Rightarrow x=10\)

\(\cdot\dfrac{y}{3}=5\Rightarrow y=15\)

\(\cdot\dfrac{z}{5}=5\Rightarrow z=25\)

Nguyễn Quang Thắng
28 tháng 11 2017 lúc 20:47

câu h thiếu điều kiện rồi bạn ơi

Nguyễn Thùy Chi
Xem chi tiết
Nguyễn Thu Hà
3 tháng 4 2020 lúc 15:50

Ta có 3x-2y/5=2z-5x/3=5y-3z/2

=> 3xz-2yz/5z=2zy-5xy/3y=5yx-3zx/2x

=\(\frac{3yz-2xz+2zx-5yx+5xy-3zy}{5z+3x+2y}\) =0

=>3x-2y/5=0=>3x=2y=>x/2=y/3 (1)

2z-5x/3=0=>2z=5x=>z/5=x/2 (2)

Từ (1) và (2) => x/2=y/3=z/5

(bạn tự lm tiếp nhé!)

Khách vãng lai đã xóa
Edogawa Conan
Xem chi tiết
Nguyễn Huy Tú
9 tháng 8 2017 lúc 14:41

Giải:
Ta có: \(\dfrac{3x-2y}{5}=\dfrac{5y-3z}{2}=\dfrac{2z-5x}{2}\)

\(\Rightarrow\dfrac{15x-10y}{25}=\dfrac{10y-6z}{4}=\dfrac{6z-15x}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau có:

\(\Rightarrow\dfrac{15x-10y}{25}=\dfrac{10y-6z}{4}=\dfrac{6z-15x}{6}=\dfrac{15x-10y+10y-6z+6z-15x}{25+4+6}=0\)

\(\Rightarrow\left\{{}\begin{matrix}15x-10y=0\\10y-6z=0\\6z-15x=0\end{matrix}\right.\Rightarrow15x=10y=6z\)

\(\Rightarrow\dfrac{15x}{30}=\dfrac{10y}{30}=\dfrac{6z}{30}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{10x}{20}=\dfrac{3y}{9}=\dfrac{2z}{10}=\dfrac{10x-3y-2z}{20-9-10}=\dfrac{5}{1}=5\)

\(\Rightarrow\left\{{}\begin{matrix}x=10\\y=15\\z=25\end{matrix}\right.\)

Vậy...

 Mashiro Shiina
9 tháng 8 2017 lúc 14:53

\(\dfrac{3x-2y}{5}=\dfrac{5y-3z}{2}=\dfrac{2z-5x}{2}\)

\(\Rightarrow\dfrac{5\left(3x-2y\right)}{25}=\dfrac{2\left(5y-3z\right)}{4}=\dfrac{3\left(2z-5x\right)}{6}\)

\(\Rightarrow\dfrac{15x-10y}{25}=\dfrac{10y-6z}{4}=\dfrac{6z-15x}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{15x-10y}{25}=\dfrac{10y-6z}{4}=\dfrac{6z-15x}{6}\)

\(=\dfrac{15x-10y+10y-6z+6z-15x}{25+4+6}\)

\(=0\)

\(\Rightarrow\left\{{}\begin{matrix}3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\\5y=3z\Rightarrow\dfrac{y}{3}=\dfrac{z}{5}\\2z=5x\Rightarrow\dfrac{z}{5}=\dfrac{x}{2}\end{matrix}\right.\)

\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)

\(\Rightarrow\dfrac{10x}{20}=\dfrac{3y}{9}=\dfrac{2z}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{10x}{20}=\dfrac{3y}{9}=\dfrac{2z}{10}=\dfrac{10x-3y-2z}{20-9-10}=\dfrac{5}{1}=5\)

\(\Rightarrow\left\{{}\begin{matrix}x=5.2=10\\y=5.3=15\\z=5.5=25\end{matrix}\right.\)

Phạm Thị Thanh Thanh
Xem chi tiết
Đạt Đỗ
Xem chi tiết
missing you =
17 tháng 7 2021 lúc 15:19

 đặt\(A=\dfrac{x^3}{2x+3y+5z}+\dfrac{y^3}{2y+3z+5x}+\dfrac{z^3}{2z+3x+5y}\)

\(=>A=\dfrac{x^4}{2x^2+3xy+5xz}+\dfrac{y^4}{2y^2+3yz+5xy}+\dfrac{z^4}{2z^2+3xz+5yz}\)

BBDT AM-GM 

\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)

theo BDT AM -GM ta chứng minh được \(xy+yz+xz\le x^2+y^2+z^2\)

vì \(x^2+y^2\ge2xy\)

\(y^2+z^2\ge2yz\)

\(x^2+z^2\ge2xz\)

\(=>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)< =>xy+yz+xz\le x^2+y^2+z^2\)

\(=>2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)\le10\left(x^2+y^2+z^2\right)\)

\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{10\left(x^2+y^2+z^2\right)}=\dfrac{x^2+y^2+z^2}{10}=\dfrac{\dfrac{1}{3}}{10}=\dfrac{1}{30}\left(đpcm\right)\)

dấu"=" xảy ra<=>x=y=z=1/3

Nguyen Ngoc Anh Linh
Xem chi tiết
Đinh Nho Hoàng
26 tháng 10 2017 lúc 12:48

a) \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)

Từ \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\Rightarrow\dfrac{x^3}{2^3}=\dfrac{y^3}{4^3}=\dfrac{z^3}{6^3}\)

\(\Leftrightarrow\dfrac{x^2}{2^2}=\dfrac{y^2}{4^2}=\dfrac{z^2}{6^2}\Leftrightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{14}{56}=\dfrac{1}{4}\)

\(\Rightarrow\dfrac{x^2}{4}=\dfrac{1}{4}\Rightarrow x^2=\dfrac{1}{4}\cdot4\Rightarrow x^2=1\Rightarrow x=1\)

\(\dfrac{y^2}{16}=\dfrac{1}{4}\Rightarrow y^2=\dfrac{1}{4}\cdot16\Rightarrow y^2=4\Rightarrow y=2\)

\(\dfrac{z^2}{36}=\dfrac{1}{4}\Rightarrow z^2=\dfrac{1}{4}\cdot36\Rightarrow z^2=9\Rightarrow z^2=3\)

Xin lỗi mình chỉ làm được câu a)

Nam Lee
Xem chi tiết
JakiNatsumi
26 tháng 9 2018 lúc 20:19

\(\dfrac{3x-2y}{5}=\dfrac{2z-5x}{3}=\dfrac{5y-3z}{2}\)

\(=\dfrac{15x-10y}{25}=\dfrac{6z-15x}{9}=\dfrac{10y-6z}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{3x-2y}{5}=\dfrac{2z-5x}{3}=\dfrac{5y-3z}{2}=\dfrac{15x-10y}{25}=\dfrac{6z-15x}{9}=\dfrac{10y-6z}{4}\)

\(=\dfrac{15x-10y+6z-15x+10y-6z}{25+9+4}=0\)

\(3x=2y\)\(\dfrac{x}{2}=\dfrac{y}{3}\)

\(2z=5x\)\(\dfrac{x}{2}=\dfrac{z}{5}\)

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{2x}{6}=\dfrac{3y}{9}=\dfrac{5z}{25}\)\(=\dfrac{2x+3y-5z}{6+9-25}=\dfrac{-60}{-10}=6\)

\(\dfrac{x}{2}=6\)\(x=12\)

\(\dfrac{y}{3}=6\)\(y=18\)

\(\dfrac{z}{5}=6\)\(z=30\)

Vậy \(x=12;y=18;z=30\)

Quốc Huy
Xem chi tiết
Xuan Tran
Xem chi tiết
Vũ Thùy Linh
24 tháng 12 2018 lúc 21:23

biết??????