RÚT GỌN CĂN BẬC HAI THEO HẰNG ĐẲNG THỨC 1 VÀ 2
\(\sqrt{8+2\sqrt{ }15}\)
RÚT GỌN CĂN BẬC HAI BẰNG PHÉP KHAI PHƯƠNG
A=\(3\sqrt{2}\left(4-\sqrt{2}\right)+3\left(1-2\sqrt{2}\right)^2\)
Rút gọn Căn thức bậc hai
\(\sqrt{\frac{2}{6}}\)
\(\sqrt{81}\)
\(\sqrt{\frac{81}{27}}\)
\(\sqrt{\frac{2}{4}}\)
\(\sqrt{32}\)
\(\sqrt{42}\)
\(\sqrt{18}\)
\(\frac{\sqrt{2}}{\sqrt{6}}\)=\(\frac{\sqrt{2}}{\sqrt{2}\sqrt{3}}\)=\(\frac{1}{\sqrt{3}}\)
\(\sqrt{\frac{2}{6}=}\frac{\sqrt{3}}{3}\)
\(\sqrt{81}=9\)
\(\sqrt{\frac{81}{27}}=\sqrt{3}\)
\(\sqrt{\frac{2}{4}}=\frac{\sqrt{2}}{2}\)
\(\sqrt{32}=4\sqrt{2}\)
\(\sqrt{42}=\sqrt{42}\)
\(\sqrt{18}=3\sqrt{2}\)
Làm bừa chả biết có đúng không nữa
\(\sqrt{\frac{2}{6}}=\sqrt{\frac{1}{3}}=\sqrt{\frac{3}{9}}=\frac{\sqrt{3}}{\sqrt{9}}=\frac{\sqrt{3}}{3}\)
\(\sqrt{81}=\sqrt{9^2}=9\)
\(\sqrt{\frac{81}{27}}=\sqrt{3}\)
\(\sqrt{\frac{2}{4}}=\frac{\sqrt{2}}{2}\)
\(\sqrt{32}=\sqrt{16\cdot2}=\sqrt{16}\cdot\sqrt{2}=4\cdot\sqrt{2}\)
\(\sqrt{42}=?\)
\(\sqrt{18}=\sqrt{2}\cdot\sqrt{9}=3\cdot\sqrt{2}\)
Cho biểu thức: \(A=\dfrac{1}{2+2\sqrt{a}}+\dfrac{1}{2-2\sqrt{a}}-\dfrac{a^2+1}{1-a^2}\)
a, Tìm đkxđ và rút gọn biểu thức A
b, Tìm giá trị của a; biết A<\(\dfrac{1}{3}\)
a: ĐKXĐ: \(\left\{{}\begin{matrix}a>=0\\a< >1\end{matrix}\right.\)
\(A=\dfrac{1}{2\left(\sqrt{a}+1\right)}-\dfrac{1}{2\left(\sqrt{a}-1\right)}+\dfrac{a^2+1}{a^2-1}\)
\(=\dfrac{\sqrt{a}-1-\sqrt{a}-1}{2\left(a-1\right)}+\dfrac{a^2+1}{a^2-1}\)
\(=\dfrac{-1}{a-1}+\dfrac{a^2+1}{a^2-1}\)
\(=\dfrac{-a-1+a^2+1}{\left(a-1\right)\left(a+1\right)}=\dfrac{a^2-a}{\left(a-1\right)\left(a+1\right)}=\dfrac{a}{a+1}\)
b: Để A-1/3<0 thì \(\dfrac{a}{a+1}-\dfrac{1}{3}< 0\)
=>3a-a-1<0
=>2a-1<0
hay 0<a<1/2
Dưới đây là 2 hằng đẳng thức trong bảy hằng đẳng thức
3. (a-b)(a+b) = a^2-b^2
7. a^3-b^3=(a-b)(a^2+ab+b^2)
Tổng quát của hằng đẳng thức 3 và 7, ta có hằng đảng thức:
a^n-b^n=(a+b)[a^(n-1)+a^(n-2)b+a^(n-3)b^2+...+ab^(n-2)+b^(n1)
Mình không hiểu hằng đẳng thức tổng quát, các bạn giảng giúp mình với!
Dưới đây là 2 hằng đẳng thức trong bảy hằng đẳng thức
3. (a-b)(a+b) = a^2-b^2
7. a^3-b^3=(a-b)(a^2+ab+b^2)
Tổng quát của hằng đẳng thức 3 và 7, ta có hằng đảng thức:
a^n-b^n=(a+b)[a^(n-1)+a^(n-2)b+a^(n-3)b^2+...+ab^(n-2)+b^(n1)
Mình không hiểu hằng đẳng thức tổng quát, các bạn giảng giúp mình với!
Rút gọn biểu thức: \(Q=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
Lời giải:
\(Q=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\sqrt{2}+\sqrt{3}+2+2+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{(\sqrt{2}+\sqrt{3}+\sqrt{4})+\sqrt{2}(\sqrt{2}+\sqrt{3}+\sqrt{4})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{(1+\sqrt{2})(\sqrt{2}+\sqrt{3}+\sqrt{4})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1+\sqrt{2}\)
Rút gọn biểu thức:
\(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}\right):\dfrac{x+1}{x-1}\) với x ≥ 0 và x ≠ 1;-1
\(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}+1}\right):\dfrac{x+1}{x-1}\\ =\dfrac{\sqrt{x}+1-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{x-1}{x+1}=\dfrac{2}{x-1}\cdot\dfrac{x-1}{x+1}\\ =\dfrac{2}{x+1}\)
\(\bigg(\dfrac{1}{\sqrt x-1}-\dfrac{1}{\sqrt x+1}\bigg):\dfrac{x+1}{x-1}\\=\bigg(\dfrac{\sqrt x+1}{(\sqrt x-1)(\sqrt x+1)}-\dfrac{\sqrt x-1}{(\sqrt x-1)(\sqrt x+1)}\bigg.\dfrac{x-1}{x+1}\\=\dfrac{\sqrt x+1-\sqrt x+1}{(\sqrt x-1)(\sqrt x+1)}.\dfrac{(\sqrt x-1)(\sqrt x+1)}{x+1}\\=\dfrac{2}{x+1}\)
Rút gọn biểu thức: \(N=\sqrt{4\sqrt{6}+8\sqrt{3}+4\sqrt{2}+18}\)
Lời giải:
\(N=\sqrt{4\sqrt{6}+8\sqrt{3}+4\sqrt{2}+18}\)
\(=\sqrt{2\sqrt{24}+4(2\sqrt{3}+\sqrt{2})+18}\)
\(=\sqrt{12+2\sqrt{24}+2+4(\sqrt{12}+\sqrt{2})+4}\)
\(=\sqrt{(\sqrt{12}+\sqrt{2})^2+4(\sqrt{12}+\sqrt{2})+4}\)
\(=\sqrt{(\sqrt{12}+\sqrt{2}+2)^2}=\sqrt{12}+\sqrt{2}+2=2\sqrt{3}+\sqrt{2}+2\)
rút gọn biểu thức Pvà Q
P=\(\frac{2x-3\sqrt{x}-2}{\sqrt{x}-2}\) và Q=\(\frac{\sqrt{x}^3-\sqrt{x}+2x-2}{\sqrt{x}+2}\)