Cho \(a+b+c=0\) và \(a^2+b^2+c^2=1\). Khi đó giá trị của biểu thức \(A=a^4+b^4+c^4\) là
Cho a + b + c = 0 và a2 + b2 + c2 = 1. Khi đó giá trị của biểu thức A = a4 + b4 + c4 là ...
CTV zo giúp vs
TA có \(\left(a+b+c\right)^2=0\Rightarrow ab+bc+ca=-\frac{1}{2}\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}\)
=> \(a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\)
Mà \(\left(a^2+b^2+c^2\right)^2=1\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1\)
=> \(a^4+b^4+c^4=\frac{1}{2}\)
^_^
Ta có: a+b+c=0 <=> (a+b+c)2=0 <=> a2+b2+c2+ 2( ab+ac+bc)=0 <=> 2(ab+ac+bc)= -1 ( vì a2+b2+c2=1) <=> ab+ac+bc= -1/2
=> (ab+ac+bc)2= 1/4 <=> a2b2+a2c2+b2c2+2abc(a+b+c)= 1/4 <=> 2(a2b2+a2c2+b2c2)= 1/2 ( vì a+b+c=0) (*)
Lại có: a2+b2+c2=1 <=> (a2+b2+c2)2=1 <=> a4+b4+c4+2(a2b2+a2c2+b2c2)=1 <=> a4+b4+c4= 1/2 ( vì (*))
Vậy,...
Cho a+b+c=0 và a^2+b^2+c^2=1. Tính giá trị của biểu thức: M=a^4+b^4+c^4
Ta có: a+b+c=0
\(\Leftrightarrow\left(a+b+c\right)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
\(\Leftrightarrow2\left(ab+bc+ac\right)=0-1=-1\)
hay \(ab+bc+ac=-\dfrac{1}{2}\)
\(\Leftrightarrow\left(ab+bc+ac\right)^2=\dfrac{1}{4}\)
\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2ab^2c+2abc^2+2a^2bc=\dfrac{1}{4}\)
\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(b+c+a\right)=\dfrac{1}{4}\)
\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2=\dfrac{1}{4}\)
Ta có: \(M=a^4+b^4+c^4\)
\(\Leftrightarrow M=a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2-2a^2b^2-2a^2c^2-2b^2c^2\)
\(\Leftrightarrow M=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+a^2c^2+b^2c^2\right)\)
\(\Leftrightarrow M=1^2-2\cdot\dfrac{1}{4}=1-\dfrac{1}{2}=\dfrac{1}{2}\)
Vậy: \(M=\dfrac{1}{2}\)
Ta có : \(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)=1\) ( * )
\(\Rightarrow ab+bc+ac=-\dfrac{1}{2}\)
Lại có : \(\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ca\right)^2\) ( suy ra từ * )
\(\Rightarrow a^4+b^4+c^4=2\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{2}\)
Vậy ...
Cho biểu thức A = 2√x /√x - 2 và B = x/x-4 + 1/√x + 2 với x>0 , x khác 4
a, Tính giá trị của biểu thức A khi x = 9
b, Rút gọn biểu thức B
c, Tìm x nguyên để biểu thức A/B có giá trị là số nguyên
Cho các số a,b,c đồng thời thỏa mãn các điều kiện a+b+c=0 và \(a^2+b^2+c^2=14\) Khi đó giá trị của biểu thức \(1+a^4+b^4+c^4\)
1. Cho 3 số a,b,c thỏa mãn a+b+c=11 và a2 +b2 +c2=87. Tìm giá trị của ab +bc+ca.
2.Cho a+b+c=0.Khi đó giá trị của biểu thức a3 +b3 +a2c +b2c- abc bằng bao nhiêu
3.Cho x+y=9 và x.y +4. Tính giá trị của x4+3x3y+3xy3 +y4.
1/ \(a+b+c=11\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=121\)
\(\Leftrightarrow ab+bc+ca=\frac{121-\left(a^2+b^2+c^2\right)}{2}=\frac{121-87}{2}=17\)
2/ \(a^3+b^3+a^2c+b^2c-abc\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)
\(=\left(a^2-ab+b^2\right)\left(a+b+c\right)=0\)
3/ \(x^4+3x^3y+3xy^3+y^4\)
\(=\left(\left(x+y\right)^2-2xy\right)^2-2x^2y^2+3xy\left(\left(x+y\right)^2-2xy\right)\)
\(=\left(9^2-2.4\right)^2-2.4^2+3.4.\left(9^2-2.4\right)=6173\)
bạn alibaba nguyễn có thể làm lại giúp mình được không ?
Cho a + b + c = 0 va a^2 + b^2 + c^2 = 1
Tính giá trị của biểu thức A = a^4 + b^4 + c^4
(a2+b2+c2)2=196(a2+b2+c2)2=196
a4+b4+c4+2(a2b2+b2c2+c2a2)=196(1)a4+b4+c4+2(a2b2+b2c2+c2a2)=196(1)
ta lại có a+b+c)^2=0a2+b2+c2=−2(ab+bc+ca)=14a2+b2+c2=−2(ab+bc+ca)=14(ab+bc+ca)2=49(ab+bc+ca)2=49
a2b2+b2c2+c2a2+2abc(a+b+c)=49a2b2+b2c2+c2a2+2abc(a+b+c)=49
a2b2+b2c2+c2a2=49(2)a2b2+b2c2+c2a2=49(2)
Từ (1);(2)a4+b4+c4=196−49.2=98
bạn ghi tùm lum ko hiểu j hết ghi lại được ko
Chia thành nhiều bước để tinh nha ban
Bước 1:a+b+c=0
(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca=0
1+2(ab+bc+ca)=0
2(ab+bc+ca)=-1
ab+bc+ca=-1/2
Bước 2 :(ab+bc+ca)^2=1/4
=a^2b^2+b^2c^2+c^2a^2+2ab^2c+2abc^2+2a^2bc=1/4
=a^2b^2+b^2c^2+c^2+a^2+2abc(a+b+c)=1/4
=a^2b^2+b^2c^2+c^2a^2+2abc.0
=a^2b^2+b^2c^2+c^2a^2
=>(ab+bc+ca)^2=a^2b^2+b^2c^2+c^2a^2=1/4
Bước 3:(a^2+b^2+c^2)^2=a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2
=a^4+b^4+c^4+2(a^2b^2+b62c^2+c^2a^2)=1
=a^4+b^4+c^4+2.1/4=1
=>a^4+b^4+c^4+1/2=1
=>a^4+b^4+c^4=1/2
Cho các số a,b,c thỏa mãn a+b+c=0 và a^2+b^2+c^2=2. Tính giá trị của biểu thức P=a^4+b^4+c^4
Cho biểu thức A=2√x - 3/√x - 2 và B=2/√x+3 + √x/√x-3 + 4√x/9-x với x≥0; x≠4; x≠9. a) tính giá trị biểu thức A khi x thỏa mãn |x-2|=2. b) rút gọn biểu thức B. c) đặt C=A.B. Tìm x để C≥1.
`a)|x-2|=2<=>[(x=4(ko t//m)),(x=0(t//m)):}`
Thay `x=0` vào `A` có: `A=[2\sqrt{0}-3]/[\sqrt{0}-2]=3/2`
`b)` Với `x >= 0,x ne 4` có:
`B=[2(\sqrt{x}-3)+\sqrt{x}(\sqrt{x}+3)-4\sqrt{x}]/[(\sqrt{x}+3)(\sqrt{x}-3)]`
`B=[2\sqrt{x}-6+x+3\sqrt{x}-4\sqrt{x}]/[(\sqrt{x}+3)(\sqrt{x}-3)]`
`B=[x+\sqrt{x}-6]/[(\sqrt{x}+3)(\sqrt{x}-3)]`
`B=[(\sqrt{x}+3)(\sqrt{x}-2)]/[(\sqrt{x}+3)(\sqrt{x}-3)]`
`B=[\sqrt{x}-2]/[\sqrt{x}-3]`
`c)` Với `x >= 0,x ne 4` có:
`C=A.B=[2\sqrt{x}-3]/[\sqrt{x}-2].[\sqrt{x}-2]/[\sqrt{x}-3]=[2\sqrt{x}-3]/[\sqrt{x}-3]`
Có: `C >= 1`
`<=>[2\sqrt{x}-3]/[\sqrt{x}-3] >= 1`
`<=>[2\sqrt{x}-3-\sqrt{x}+3]/[\sqrt{x}-3] >= 0`
`<=>[\sqrt{x}]/[\sqrt{x}-3] >= 0`
Vì `x >= 0=>\sqrt{x} >= 0`
`=>\sqrt{x}-3 > 0`
`<=>x > 9` (t/m đk)
(2,0 điểm) Cho các biểu thức A = (sqrt(x))/(2sqrt(x) - 4); B = (sqrt(x))/(sqrt(x) + 2) +3(sqrt(x)-x /x-4 với x >= 0 ,x ne4 1) Tính giá trị của A khi x = 36 . 2) Rút gon biểu thức C = B : A . 3) Tìm các giá trị của x để C. sqrt(x) < 4/3 .
1: Khi x=36 thì \(A=\dfrac{6}{2\cdot6-4}=\dfrac{6}{12-4}=\dfrac{6}{8}=\dfrac{3}{4}\)
2:
ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x< >4\end{matrix}\right.\)
\(C=B:A\)
\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}+\dfrac{3\sqrt{x}-x}{x-4}\right):\dfrac{\sqrt{x}}{2\sqrt{x}-4}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)+3\sqrt{x}-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{2\left(\sqrt{x}-2\right)}{\sqrt{x}}\)
\(=\dfrac{x-2\sqrt{x}+3\sqrt{x}-x}{\sqrt{x}+2}\cdot\dfrac{2}{\sqrt{x}}=\dfrac{2}{\sqrt{x}+2}\)
3: \(C\cdot\sqrt{x}< \dfrac{4}{3}\)
=>\(\dfrac{2\sqrt{x}}{\sqrt{x}+2}-\dfrac{4}{3}< 0\)
=>\(\dfrac{2\sqrt{x}\cdot3-4\left(\sqrt{x}+2\right)}{3\left(\sqrt{x}+2\right)}< 0\)
=>\(6\sqrt{x}-4\sqrt{x}-8< 0\)
=>\(2\sqrt{x}-8< 0\)
=>\(\sqrt{x}< 4\)
=>\(0< =x< 16\)
Kết hợp ĐKXĐ của C, ta được: \(\left\{{}\begin{matrix}0< x< 16\\x< >4\end{matrix}\right.\)