Chứng minh rằng x^2+y^2+1>=xy+x+y với mọi x;y
Chứng minh rằng với mọi số nguyên thì x,y thì
a) x(x^2+x)+x(x+1)chia hết cho (x+1) b) xy^2-yx^2+xy chia hết cho xy
a) x(x² + x) + x(x + 1)
= x²(x + 1) + x(x + 1)
= (x + 1)(x² + x)
= x(x + 1)² ⋮ (x + 1)
b) xy² - yx² + xy
= xy(y - x + 1) ⋮ xy
chứng minh rằng B=xy(x^2-y^2)(x^2+y^2) chia hết cho 30 với mọi số nguyên x,y
chứng minh rằng \(x^2-xy+y^2>0\) với mọi x, y không đồng thời = 0
\(A=x^2-xy+y^2\)
\(\Rightarrow A=x^2-xy+\dfrac{1}{4}y^2-\dfrac{1}{4}y^2+y^2\)
\(\Rightarrow A=\left(x-\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2\)
mà \(\left(x-\dfrac{1}{2}y\right)^2\ge0;\dfrac{3}{4}y^2\ge0\)
\(\Rightarrow A=\left(x-\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2\ge0\)
\(\Rightarrow\left(x-\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2>0\) với mọi x,y không đồng thời bằng 0
Chứng minh rằng x^2+y^2+1>=xy+x+y với mọi x,y
x^2-2xy+6y^2-12x+2y+45>=4
Chứng minh rằng với mọi x,y là số thực ta luôn có: \(x^2+y^2+xy+1\ge \sqrt3(x+y)\)Cảm ơn mọi người.
chứng minh rằng với mọi x;y ta luôn có : (1+x2)(1+y2)+4xy+2(x+y)(1+xy) là số chính phương
\(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)\)
\(=1+x^2+y^2+x^2y^2+4xy+2\left(x+y\right)\left(1+xy\right)\)
\(=\left(x^2+y^2+2xy\right)+\left(x^2y^2+2xy+1\right)+2\left(x+y\right)\left(1+xy\right)\)
\(=\left(x+y\right)^2+\left(1+xy\right)^2+2\left(x+y\right)\left(1+xy\right)\)
\(=\left(x+y+1+xy\right)^2\) là SCP
(1+x2)(1+y2)+4xy+2(x+y)(1+xy)
= 1+y2+x2+x2y2+2xy+2xy+2(x+y)(1+xy)
=(x2+2xy+y2)+(x2y2+2xy+1)+2(x+y)(1+xy)
=(x+y)2+(xy+1)2+2(x+y)(1+xy)
=(x+y+xy+1)2
Mọi người giúp mình với. Chứng minh rằng với mọi x,y là số thức ta luôn có: \({x^2} + {y^2} + xy + 1 \ge \sqrt 3 (x + y)\) Tks all ^^
chứng minh rằng với mọi x, y >0: \(\dfrac{2}{x^2+2y^2+3}\le\dfrac{1}{xy+y+1}\)
Do \(x,y>0\) BĐT tương đương:
\(\dfrac{x^2+2y^2+3}{2}\ge xy+y+1\)
\(\Leftrightarrow x^2+2y^2+3\ge2xy+2y+2\)
\(\Leftrightarrow x^2-2xy+y^2+y^2-2y+1\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-1\right)^2\ge0\) (luôn đúng)
Vậy BĐT được chứng minh xong
Vì x,y>0 nên các mẫu thức dương.
BĐT<=>\(2\left(xy+y+1\right)\le x^2+2y^2+3\\ \Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)\ge0\\ \Leftrightarrow\left(x-y\right)^2+\left(y-1\right)^2\ge0\left(1\right)\)
(1) đúng với mọi x,y>0 nên BĐT đã cho được chứng minh.
Dấu "=" xảy ra khi và chỉ khi x=y=1.
Chứng minh rằng:
a/x2 + xy + y2 + 1 > 0 với mọi x, y
b/x2 + 5y2 + 2x - 4xy - 10y + 14 > 0 với mọi x, y.
a/ \(x^2+xy+y^2+1\)=\(\left(x^2+2x\dfrac{y}{2}+\left(\dfrac{y}{2}\right)^2\right)+\dfrac{3y^2}{4}+1\)
=\(\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\) \(\ge\)0
vậy....
b