Lập phương trình chính tắc của elip đi qua hai điểm \(A\left( {5;0} \right)\) và có một tiêu điểm là \({F_2}\left( {3;0} \right)\).
Lập phương trình chính tắc của elip trong trường hợp sau: Elip đi qua các điểm M(0; 3) và N(3; -12/5)
Gọi Elip cần tìm có dạng : (E) :
Vậy phương trình chính tắc của elip:
viết phương trình chính tắc của elip các trường hợp sau 1. elip đi qua điểm M(0;3) và có tiêu điểm F2(5;0) 2. Elip đi qua hai điểm A(7;0), B(0;3) 3. Elip đi qua hai điểm A(0;1), N(1; căn 3 / 2)
1: (E): x^2/a^2+y^2/b^2=1
Thay x=0 và y=3 vào (E), ta được:
3^2/b^2=1
=>b^2=9
=>b=3
F2(5;0)
=>c=5
=>\(\sqrt{a^2-9}=5\)
=>a^2-9=25
=>a^2=34
=>\(a=\sqrt{34}\)
=>x^2/34+y^2/9=1
2: Thay x=7 và y=0 vào (E), ta được:
7^2/a^2+0^2/b^2=0
=>a^2=49
=>a=7
Thay x=0 và y=3 vào (E), ta được:
0^2/a^2+3^2/b^2=1
=>b^2=9
=>b=3
=>(E): x^2/49+y^2/9=1
3: Thay x=0 và y=1 vào (E), ta được:
1/y^2=1
=>y=1
=>(E): x^2/a^2+y^2/1=1
Thay x=1 và y=căn 3/2 vào (E), ta được:
1^2/a^2+3/4=1
=>1/a^2=1/4
=>a^2=4
=>a=2
=>(E); x^2/4+y^2/1=1
Trong mặt phẳng tọa độ cho hai điểm A(3;0), B(0;2) và đường thẳng d: x + y = 0.
a) Lập phương trình tham số của đường thẳng Δ đi qua A và song song với d
b) Lập phương trình đường tròn đi qua A,B và có tâm thuộc đường thẳng d
c) Lập phương trình chính tắc của elip đi qua điểm B và có tâm sai e = 5 3
Đường thẳng Δ song song với d ⇒ Δ: x + y + c = 0, (c ≠ 0)
Vì Δ đi qua A ⇒ 3 + 0 + c = 0 ⇒ c = -3(tm)
Vậy đường thẳng Δ có dạng: x+y-3=0
Vì đường tròn có tâm I thuộc d nên I(a;-a)
Vì đường tròn đi qua A, B nên I A 2 = I B 2 ⇒ (3 - a ) 2 + a 2 = a 2 + (2 + a ) 2 ⇔ (3 - a ) 2 = (2 + a ) 2
Vậy phương trình đường tròn có dạng:
Ta có:
Giả sử elip (E) có dạng:
Vì (E) đi qua B nên:
Mà
Vậy phương trình chính tắc của elip (E) là:
Lập phương trình chính tắc của elip trong các trường hợp sau :
a) Elip đi qua các điểm \(M\left(0;3\right)\) và \(N\left(3;-\dfrac{12}{5}\right)\)
b) Elip có một tiêu điểm \(F_1\left(-\sqrt{3};0\right)\) và điểm \(M\left(1;\dfrac{\sqrt{3}}{2}\right)\) nằm trên elip
Phương trình chính tắc của elip có dạng: + = 1
a) Elip đi qua M(0; 3):
+ = 1 => b2 = 9
Elip đi qua N( 3; ):
+ = 1 => a2 = 25
Phương trình chính tắc của elip là : + = 1
b) Ta có: c = √3 => c2 = 3
Elip đi qua điểm M(1; )
+ = 1 => + = 1 (1)
Mặt khác: c2 = a2 – b2
=> 3 = a2 – b2 => a2 = b2 + 3
Thế vào (1) ta được : + = 1
<=> a2 = 4b2 + 5b2 – 9 = 0 => b2= 1; b2 = ( loại)
Với b2= 1 => a2 = 4
Phương trình chính tắc của elip là : + = 1.
Phương trình chính tắc của elip đi qua điểm (5;0) và có tiêu cự bằng 2 căn 5
\(F_1F_2=2c=2\sqrt{5}\)
\(\Rightarrow c=\dfrac{2\sqrt{5}}{2}=\sqrt{5}\)
\(\left(E\right)\) qua \(\left(5;0\right)\Rightarrow a=5\)
Ta có : \(b=\sqrt{a^2-c^2}\)
\(\Rightarrow b^2=a^2-c^2\)
\(\Rightarrow b^2=5^2-\sqrt{5}^2\)
\(\Rightarrow b^2=25-5=20\)
Vậy \(PTCT\left(E\right):\dfrac{x^2}{25}+\dfrac{y^2}{20}=1\)
Lập phương trình chính tắc của elip có tâm O, hai trục đối xứng là hai trục toạ độ và qua hai điểm M ( - 2 3 ; 3 2 ) ; N ( 2 ; 3 3 2 )
A.
B.
C.
D.
Gọi phương trình chính tắc elip cần tìm là
.
Do elip đi qua
,
nên ta có hệ
Vậy elip cần tìm là
Chọn C.
Viết phương trình chính tắc của elip đi qua điểm A(0;-4) và có 1 tiêu điểm F2(3;0)
Gọi ptr chính tắc của `(E)` có dạng: `[x^2]/[a^2]+[y^2]/[b^2]=1`
Thay `A(0;-4)` vào `(E)` có:
`16/[b^2]=1<=>b^2=16`
Vì `F_2 (3;0)=>c=3=>c^2=9`
Ta có: `a^2=b^2+c^2`
`<=>a^2=16+9`
`<=>a^2=25`
Vậy ptr chính tắc của `(E)` là: `[x^2]/25+[y^2]/16=1`
Viết phương trình chính tắc của elip đi qua điểm A(0;-4) và có 1 tiêu điểm F2(3;0)
viết phương trình chính tắc của elip đi qua điểm A(0;-4) và có 1 tiêu điểm F2(3;0)
\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\)(E)
Thay x=0 và y=-4 vào (E), ta được:
16/b^2=1
=>b=4
F2(3;0)
=>c=3
=>căn a^2-16=3
=>a^2-16=9
=>a=5
=>x^2/25+y^2/16=1