b)(2x-1)(4x^2+2x+1)(2x+1)(4x^2-2x+1)
c)a^3+b^3=(a+b)[(a-b)^2+ab]
1. Phân tích đa thức thành nhân tử:
a. (ab-1)^2+(a+b)^2
b. x^3+2x^2+2x+1
c. x^3-sx^2+12x-27
d. x64-2x^3+2x-1
e. x^4+2x^3+2x^2+2x+1
f. x^2-2x-4y^2-4y
g. x^4+2x^3-4x-4
h. x^2(1-x^2)-4-4x^2
i. (1+2x)(1-2x)-x(x+2)(x-2)
j. x^2+y^2-x^2.y^2+xy-x-y
2.Phân tích đa thức thành nhân tử:
a. a(b^2+c^2+bc)+b(c^2+a^2+ac)+c(a^2+b^2+ab)
b.(a+b+c)(ab+bc+ca)-abc
c. a(a+2b)^3-b(2a+b)^3
1.a)4x^4× (4x^4+2x^2)
b) 4x^4 - 2x^2×(3x^3+2x)
c) (3x^3-2y)×(5x^3+3y)
d) (a^3+3ab-b^2) ×(2a-b)
\(a,=16x^8+8x^6\\ b,=4x^4-6x^5-4x^3\\ c,=15x^6+9x^3y-10x^3y-6y^2\\ =15x^6-x^3y-6y^2\\ d,=2a^4-a^3b+6a^2b-3ab^2-3ab^2+b^3\\ =2a^4-a^3b+6a^2b-6ab^2+b^3\)
Bài 1: Rút gọn biểu thức
A, ( x – 3 )^2 – ( x + 2 )^2
B, ( 4x^2 + 2xy + y^2 )( 2x – y ) – ( 2x + y )( 4x^2 – 2xy + y^2 )
C, ( 2x + 1 )^2 + 2( 4x^2 – 1 ) + ( 2x – 1 )^2
D, ( x – 3 )( x + 3 ) – ( x – 3 )
Bài 2: Phân tích đa thức thành nhân tử
A, a^2 – ab + a – b
B, m^4 – n^6
C, x^2 + 6x + 8
D, 2x^2 + 4x + 2 – 2y^2
Bài 3: Tìm x
A, x^2 – 16 = 0
B, x^4 – 2x^3 + 10x^2 – 20x = 0
C, 15 – 2x – x^2 = 0
D, ( x^2 – 1/2x ) : 2x – ( 3x – 1 ) : ( 3x – 1 ) = 0
Giúp em với ạ !!!
A) \(\left(x-3\right)^2-\left(x+2\right)^2\)
\(=\left(x-3-x-2\right)\left(x-3+x+2\right)\)
\(=-5.\left(2x-1\right)\)
B) \(\left(4x^2+2xy+y^2\right)\left(2x-y\right)-\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)
\(=\left(2x\right)^3-y^3-\left[\left(2x\right)^3+y^3\right]\)
\(=8x^3-y^3-8x^3-y^3\)
\(=-2y^3\)
C) \(x^2+6x+8\)
\(=x^2+6x+9-1\)
\(=\left(x+3\right)^2-1\)
\(=\left(x+3-1\right)\left(x+3+1\right)\)
\(=\left(x+2\right)\left(x+4\right)\)
bài 3 A) \(x^2-16=0\)
\(\left(x-4\right)\left(x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-4=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
vậy \(\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
B) \(x^4-2x^3+10x^2-20x=0\)
\(x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\left(x^3+10x\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^3+10x=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x\left(x^2+10\right)=0\\x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
vậy \(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
phân tích đa thức thành nhân tử
a) 4x (a-b) +6xy(b-a)
b) (6x+3) - ( 2x-5) (2x+1)
c) 4 ( x-3)^2 +2x (3-x)
d) x^4 +2x^2 -4x-4
e) 2x (x+y) -x -y
g)( 3x-1 )^2 - (x+3)^2
a) \(4x\left(a-b\right)+6xy\left(b-a\right)\)
\(=4x\left(a-b\right)-6xy\left(a-b\right)\)
\(=\left(4x-6xy\right)\left(a-b\right)\)
\(=2x\left(2-3y\right)\left(a-b\right)\)
b) \(\left(6x+3\right)-\left(2x-5\right)\left(2x+1\right)\)
\(=3\left(2x+1\right)-\left(2x-5\right)\left(2x+1\right)\)
\(=\left(3-2x+5\right)\left(2x+1\right)\)
\(=\left(8-2x\right)\left(2x+1\right)\)
\(=2\left(4-x\right)\left(2x+1\right)\)
g: \(\left(3x-1\right)^2-\left(x+3\right)^2\)
\(=\left(3x-1-x-3\right)\left(3x-1+x+3\right)\)
\(=\left(2x-4\right)\left(4x+2\right)\)
\(=4\left(x-2\right)\left(2x+1\right)\)
Rút gọn biểu thức:
Q=(2x+3y)(4x^2-6xy+9y^2)
2 Tìm x biết
(4x^2+2x+1)(2x-1)-4x(2x^2-3)=23
3 Cho a-b=1 và ab=6. Tính a^3-b^3
1.
Q = (2x + 3y)(4x^2 - 6xy + 9y^2)
Q = (2x + 3y) [(2x)^2 - 2x . 3y + (3y)^2]
Q = (2x)^3 - (3y)^3
Q = 8x^3 - 27y^3
2.
(4x^2 + 2x + 1)(2x - 1) - 4x(2x^2 - 3) = 23
[(2x)^2 + 2x . 1 + 1^2)(2x - 1)] - 4x(2x^2 - 3) = 23
[(2x)^3 - 1^3] - 4x(2x^2 - 3) = 23
(8x^3 - 1) - (8x^3 + 12x) = 23
8x^3 - 1 - 8x^3 - 12x = 23
-1 - 12x = 23
12x = -22
x = -22/12
x = -11/6
3. Ta có:
a^3 - b^3 = (a - b)^3 + 3ab(a - b)
a^3 - b^3 = 1^3 + 3 . 6 . 1
a^3 - b^3 = 19
Bài 1: Rút gọn biểu thức sau:
A/ (x+3).(x^2-3x+9) -(54+x^3)
B/ (2x+y).(4x^2-2xy+y^2)-(2x-y).(4x^2+2xy+y^2)
C/ (2x-1)^2- (2x+2)^2
D/ (a+b)^3 - 3ab.(a+b)
Bài 2: tìm x, biết
A/ x^2-2x +1=25
B/ x^3 -3x^2= -3x+1
Bài 3 chứng minh rằng giá trị của biểu thức sau luôn dương với mọi giá trị của biến
A/ A= 4x^2+4x+2
B/ B= 2x^2-2x+1
bài 1 : a. x^3 +27 -54-x^3 =-27
b. 8x^3 +y^3 -8x^3 +y^3 =2y^3
c. (2x-1+2x+2)(2x-1-2x-2)=(4x+1).(-3)=-12x-3
d. a^3 +b^3 +3ab(a+b) -3ab(a+b)=a^3+b^3
A=(4x^2 +4x+1 )+1
A=(2x+1)^2 +1 >0
B=(x^2 -2x+1 )+x^2
B=(x-1)^2 +x^2 >0
: Tìm x, biết:
a) 3x( 4x- 1) - 2x(6x- 3 )=30 b) 2x(3-2x) + 2x(2x-1)=15
c) (5x-2)(4x-1) + (10x +3)(2x - 1)=1 d) (x+2) (x+2)- (x -3)(x+1) = 9
e) (4x+1)(6x-3) = 7 + (3x – 2)(8x + 9) g) (10x+2)(4x- 1)- (8x -3)(5x+2) =14
`@` `\text {Ans}`
`\downarrow`
`a)`
`3x(4x-1) - 2x(6x-3) = 30`
`=> 12x^2 - 3x - 12x^2 + 6x = 30`
`=> 3x = 30`
`=> x = 30 \div 3`
`=> x=10`
Vậy, `x=10`
`b)`
`2x(3-2x) + 2x(2x-1) = 15`
`=> 6x- 4x^2 + 4x^2 - 2x = 15`
`=> 4x = 15`
`=> x = 15/4`
Vậy, `x=15/4`
`c)`
`(5x-2)(4x-1) + (10x+3)(2x-1) = 1`
`=> 5x(4x-1) - 2(4x-1) + 10x(2x-1) + 3(2x-1)=1`
`=> 20x^2-5x - 8x + 2 + 20x^2 - 10x +6x - 3 =1`
`=> 40x^2 -17x - 1 = 1`
`d)`
`(x+2)(x+2)-(x-3)(x+1)=9`
`=> x^2 + 2x + 2x + 4 - x^2 - x + 3x + 3=9`
`=> 6x + 7 =9`
`=> 6x = 2`
`=> x=2/6 =1/3`
Vậy, `x=1/3`
`e)`
`(4x+1)(6x-3) = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + 24x^2 +11x - 18`
`=> 24x^2 - 6x - 3 = 24x^2 + 18x -11`
`=> 24x^2 - 6x - 3 - 24x^2 + 18x + 11 = 0`
`=> 12x +8 = 0`
`=> 12x = -8`
`=> x= -8/12 = -2/3`
Vậy, `x=-2/3`
`g)`
`(10x+2)(4x- 1)- (8x -3)(5x+2) =14`
`=> 40x^2 - 10x + 8x - 2 - 40x^2 - 16x + 15x + 6 = 14`
`=> -3x + 4 =14`
`=> -3x = 10`
`=> x= - 10/3`
Vậy, `x=-10/3`
1) rút gọn
a) (x^2-2x+2)(x^2-2)(x^2+2x+2)(x^2+2)
b) (x+1)^2-(x-1)^2+3x^3-3x(x+1)(x-1)
c) (2x+1)^2+2(4x^2-1)+(2x+1)^2
d) (3x+1)^2-2(3x+1)(3x+5)+(3x+5)^2
e) (a-b+c)^2-2(a-b+c)(c-b)+(b-c)^2
f)(2x-5)(4x^2+10x+25)(2x+5)(4x^2-10x+25)
g)(a+b)^3+(a-b)^3-2a^3
h) 100^2-99^2+98^2-97^2+....+2^2 -1
Bài 1: (2đ). Thực hiện phép tính: a) 3x(x² + 2x - 1) b) (2x² +5x+2) : (x+2) 6 3 c) x² + 4x + 2x+8 Bài 2: (2đ). a) Tim x, biết: x(x – 2)+x−2 =0 a) x²-25-(x + 5) = 0 a) 2x²(3x² - 7x +2) b) (2x²-7x+3): (2x - 1) r 4-4x c) + x-2 x-2 x +1 -2x + c) 2x-2x² b) Tính giá trị của biểu thức: xẻ + 2x + l − y, tại x = 94,5 và y=4,5 b) Tính giá trị của biểu thức: (X + 1) − y”, tại x =94,5 và y=4,5 c) Tính giá trị biểu thức: Q = xẻ − 10x + 25 tại x = 1005 Bài 3: (2đ) Rút gọn phân thức a) A = x² +6x+9 b) 4x+10 2x²+5x B = c) C= x²-xy Sy²-5xy Bài 5: (2,5 đ) Cho AABC, đường trung tuyển AM. Gọi D là trung điểm của AB, E là điểm dối xứng với M qua D. a) Tử giác AEBM là hình gì? Vì sao? b) Biết AC = 12cm, tính độ dải đoạn MD?
Bài 2:
a: \(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)