Tìm x:
3x2+13x+12=0
giải phương trình:
c) 3x2+13x+12=0
a \(\Leftrightarrow3x^2+9x+4x+12=0\Leftrightarrow3x\left(x+3\right)+4\left(x+3\right)=0\Leftrightarrow\left(x+3\right)\left(3x+4\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\3x+4=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-\dfrac{4}{3}\end{matrix}\right.\)
\(3x^2+13x+12=0\)
\(\Leftrightarrow3\left(x^2+\dfrac{13}{3}x+4\right)=0\Leftrightarrow x^2+\dfrac{13}{3}x+4=0\)
\(\Leftrightarrow x^2+3x+\dfrac{4}{3}x+4=0\)
\(\Leftrightarrow x\left(x+3\right)+\dfrac{4}{3}\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+\dfrac{4}{3}\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{4}{3}\\x=-3\end{matrix}\right.\)
Cho E = {x ≤ Z||x| ≤ 5}, F = {x ∈ N ||x| ≤ 5} và
B = {x ∈ Z|(x – 2)(x + 1)(2x2 – x – 3) = 0}. Chứng minh A ⊂ E và B⊂E
Cho A = {x ∈ R | x2+ x – 12 = 0 và 2x2 – 7x + 3 = 0}
B = {x ∈ Z | 3x2 – 13x + 12 =0 hoặc x2 – 3x = 0}
Tìm giá trị nguyên của biến x để tại đó giá trị của mỗi biểu thức sau là một số nguyên: 3 x 2 - x + 1 3 x + 2
Ta có:
Vì x là số nguyên nên x – 1 là số nguyên.
Để biểu thức đã cho là số nguyên thì 3 ⋮ (3x + 2) và x ≠ -2/3
Suy ra: 3x + 2 ∈ Ư(3) = {-3; -1; 1; 3}
Ta có: 3x + 2 = -3 ⇒ x = -5/3 ∉ Z (loại)
3x + 2 = -1 ⇒ x = - 1
3x + 2 = 1 ⇒ x = -1/3 ∉ Z (loại)
3x + 2 = 3 ⇒ x = 1/3 ∉ Z (loại)
x = -1 khác -3/2
Vậy với x = - 1 thìcó giá trị nguyên.
Tìm X biết:
a/ 5x (x - 2000) – x + 2000 = 0
b/ x3 – 13x = 0
c/ 3x2 - 6x =0
d/ x(x- 5) +3(x-5)=0
e/9x2 – 4 =0
giúp mình vs thx mn
\(a,\Rightarrow\left(x-2000\right)\left(5x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=2000\\x=\dfrac{1}{5}\end{matrix}\right.\\ b,\Rightarrow x\left(x^2-13\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{13}\\x=-\sqrt{13}\end{matrix}\right.\\ c,\Rightarrow3x\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\\ d,\Rightarrow\left(x-5\right)\left(x+3\right)=0\Rightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\\ e,\Rightarrow\left(3x-2\right)\left(3x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
1. (x2 - 9x + 20)(x2 - 13x + 12) = 1680
2. (x2 + x - 2)(x2 + x - 3) = 12
3. (x2 - 9)2 = 12x + 1
4. x3 + 3x2 + 4x + 2 = 0
5. x3 + 2x2 - x - 2 = 0
cac ban giup minh voi a
2: \(\Leftrightarrow\left(x^2+x\right)^2-5\left(x^2+x\right)-6=0\)
\(\Leftrightarrow x^2+x-6=0\)
=>(x+3)(x-2)=0
=>x=-3 hoặc x=2
5: \(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)
hay \(x\in\left\{-2;1;-1\right\}\)
Tìm x biết
a) x + 30 % x = − 1 , 3
b) 1 3 x + 2 5 x − 1 = 0
c) 3 x − 1 2 − 5 x + 3 5 = − x + 1 5
a) x + 30 % x = − 1 , 3
x 1 + 3 10 = − 13 10 13 10 x = − 13 10 x = − 1
b) 1 3 x + 2 5 x − 1 = 0
1 3 x + 2 5 x − 2 5 = 0 11 15 x = 2 5 x = 2 5 : 11 15 x = 6 11
c) 3 x − 1 2 − 5 x + 3 5 = − x + 1 5
3 x − 3 2 − 5 x − 3 = − x + 1 5 x = − 3 2 − 3 − 1 5 x = − 47 10
Gọi x 1 ; x 2 là hai giá trị thỏa mãn 3 x 2 + 13 x + 10 = 0 . Khi đó 2 x 1 . x 2 bằng
A. - 20 3
B. 20 3
C. 10 3
D. - 10 3
Ta có
3 x 2 + 13 x + 10 = 0 ⇔ 3 x 2 + 3 x + 10 x + 10 = 0
ó 3x(x + 1) + 10(x + 1) = 0
ó (x + 1)(3x + 10) = 0
=> 2 x 1 x 2 = 2 . ( - 1 ) . - 10 3 = 20 3
Đáp án cần chọn là: B
Bài 7. Tìm x,biết:
a) x-3x2=0 e) 5x(3x-1)+x(3x-1)-2(3x-1)=0
b) (x+3)2-x(x-2)=13 c) (x-4)2-36=0
d) x2-7x+12=0 g) x2-2018x-2019=0
Bài 8. Tìm x, biết
a) (2x-1)2=(x+5)2 b) x2-x+1/4
c) 4x4-101x2+25=0 d) x3-3x2+9x-91=0
Tìm x, biết
a) x2=5
b) 3x2-12=0
c) 4x2-3=-9
d) 5x2-3=-3
\(a,x^2=5\Leftrightarrow x=\pm\sqrt{5}\)
Vậy \(S=\left\{\pm\sqrt{5}\right\}\)
\(b,3x^2-12=0\Leftrightarrow3x^2=12\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)
Vậy \(S=\left\{\pm2\right\}\)
\(c,4x^2-3=-9\)
\(\Leftrightarrow4x^2=-6\)
\(\Leftrightarrow x^2=-\dfrac{3}{2}\) (loại)
Vậy pt vô nghiệm.
\(d,5x^2-3=-3\)
\(\Leftrightarrow5x^2=0\)
\(\Leftrightarrow x=0\)
Vậy \(S=\left\{0\right\}\)
a)
`x^2 =5`
`=>\(\left[{}\begin{matrix}x=\sqrt{5}\\x=-\sqrt{5}\end{matrix}\right.\)
b)
`3x^2 -12=0`
`<=>3x^2 =12`
`<=>x^2 =4`
\(< =>\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
c)
`4x^2 -3=-9`
`<=>4x^2 =-6`
`<=>x^2 =-3/2` (vô lí vì `x>=0AA x` )
d)
`5x^2 -3=3`
`<=>5x^2 =0`
`<=>x^2 =0`
`<=>x=0`