chứng minh
7a2+3ab/11a2-8b2=7c2+3cb/11a2-8d2
Chứng minh rằng: nếu a b = c d thì
a ) 5 a + 3 b 5 a − 3 b = 5 c + 3 d 5 c − 3 d
b ) 7 a 2 + 3 a b 11 a 2 − 8 b 2 = 7 c 2 + 3 c d 11 c 2 − 8 d 2
Cho tỉ lệ thức : \(\dfrac{a}{b}=\dfrac{c}{d}\) . Chứng minh : \(\dfrac{2a^2-3ab+5b^2}{2b^2+3ab}=\dfrac{2c^2-3cb+5b^2}{2b^2+3ab}=\dfrac{2c^2-3cd+5d^2}{2d^2+3cd}\) . Với điều kiện mẫu thức được xác định.
\(Cho\)\(\dfrac{a}{b}\)
\(Chứng\) \(Minh\)
\(\dfrac{7a^2+3ab}{11a^2-8b}\)\(=\)\(\dfrac{7c^2+3cd}{11c^2-8d}\)
Cho \(\dfrac{a}{b}\) như thế nào thì mới chứng minh được chứ em
cho a/b=c/d chứng minh 7a^2+3ab/11a^2-8b^2=7c^2+3cd/11c^2-8d^2
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7b^2k^2+3\cdot bk\cdot b}{11\cdot b^2k^2-8b^2}=\dfrac{7b^2k^2+3b^2k}{11b^2k^2-8b^2}=\dfrac{7k^2+3k}{11k^2-8}\)
\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7d^2k^2+3\cdot dk\cdot d}{11d^2k^2-8d^2}=\dfrac{7k^2+3k}{11k^2-8}\)
Do đó: \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
Hẹp me
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) Chứng minh:
\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(VT:\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7b^2k^2+3b^2k}{11b^2k^2-8b^2}=\dfrac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\\ VP:\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7d^2k^2+3d^2k}{11d^2k^2-8d^2}=\dfrac{d^2\left(7k^2+3k\right)}{d^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\\ \Rightarrow VT=VP\\ \Rightarrowđpcm\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=kb\\c=kd\end{matrix}\right.\)
Ta có:
\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7\left(kb\right)^2+3\left(kb\right).b}{11\left(kb\right)^2-8b^2}=\dfrac{7k^2+3k}{11k^2-8}\) (1)
\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7\left(kd\right)^2+3\left(kd\right)d}{11\left(kd\right)^2-8d^2}=\dfrac{7k^2+3k}{11k^2-8}\) (2)
(1),(2) \(\Rightarrow\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
cho \(\dfrac{a}{b}=\dfrac{c}{d}\) Chứng minh rằng
\(\dfrac{7a^2+3ab}{11a^2+8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
Chứng minh rằng :
\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7b^2k^2+3bk\cdot b}{11b^2k^2-8b^2}=\dfrac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\)
\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7d^2k^2+3d^2k}{11d^2k^2-8d^2}=\dfrac{7k^2+3k}{11k^2-8}\)
=>\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
Cho a/b = c/d với a, b, c, d > 0. Chứng minh rằng\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)
\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7b^2k^2+3b^2k}{11b^2k^2-8b^2}=\dfrac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\left(1\right)\)
\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7d^2k^2+3d^2k}{11d^2k^2-8d^2}=\dfrac{d^2\left(7k^2+3k\right)}{d^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\left(2\right)\)
\(\left(1\right)\left(2\right)\RightarrowĐpcm\)
cho a/b= c/d thì
chứng minh\(\frac{7a^2-3ab}{11a^2-8b^2}=\frac{7c^2+3cd}{11c^2-8d^2}\)