Cho hàm số y= \(\dfrac{2x}{x^2+1}\). CMR
a) hàm số trên đồng biến trong khoảng(0;1)
b) hàm số trên nghịch biến với mọi x >1
cho hàm số y=f(x)=-x^2-2x+1. Mệnh đề nào sau đây là đúng? A. Hàm số nghịch biến trên khoảng (-1;+vô cực) B. Hàm số nghịch biến trên khoảng (-vô cực;-1) C. Hàm số đồng biến trên khoảng (-1;+vô cực) D. Hàm số đồng biến trên khoảng (-vô cực;0)
B. Hàm số nghịch biến trên khoảng \(\left(-\infty;-1\right)\)
1) hàm số \(y=\dfrac{x+5}{x+m}\) đồng biến trên khoảng (\(-\infty\),-8)
2) hàm số \(y=\dfrac{x+4}{x+m}\) đồng biến trên khoảng (\(-\infty\),-7)
3) hàm số \(y=\dfrac{x+2}{x+m}\) đồng biến trên khoảng (\(-\infty\),-5)
1. Cho hàm số y =f(x) có đạo hàm f'(x) = (x^2 -1)(x-2)^2(x-3) . Hàm số đồng biến ; nghịch biến trên khoảng nào? 2. Cho hàm số y = x^4 -2x^2 . Hàm số đồng biến ; nghịch biến trên khoảng nào?
1.
\(f'\left(x\right)=\left(x^2-1\right)\left(x-2\right)^2\left(x-3\right)\) có các nghiệm bội lẻ \(x=\left\{-1;1;3\right\}\)
Sử dụng đan dấu ta được hàm đồng biến trên các khoảng: \(\left(-1;1\right);\left(3;+\infty\right)\)
Hàm nghịch biến trên các khoảng \(\left(-\infty;-1\right);\left(1;3\right)\)
2.
\(y'=4x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=1\end{matrix}\right.\)
Lập bảng xét dấu y' ta được hàm đồng biến trên \(\left(-1;0\right);\left(1;+\infty\right)\)
Hàm nghịch biến trên \(\left(-\infty;-1\right);\left(0;1\right)\)
1) hàm số \(y=\dfrac{x+m^2}{x+4}\) đồng biến trên từng khoảng xác định
2) hàm số \(y=\dfrac{x+2}{x+3m}\) đồng biến trên khoảng (\(-\infty\),-6)
1: TXĐ: D=R\{-4}
\(y=\dfrac{x+m^2}{x+4}\)
=>\(y'=\dfrac{\left(x+m^2\right)'\left(x+4\right)-\left(x+m^2\right)\left(x+4\right)'}{\left(x+4\right)^2}\)
\(=\dfrac{x+4-x-m^2}{\left(x+4\right)^2}=\dfrac{4-m^2}{\left(x+4\right)^2}\)
Để hàm số đồng biến trên từng khoảng xác định thì
\(\dfrac{4-m^2}{\left(x+4\right)^2}>0\forall x\in TXĐ\)
=>\(4-m^2>0\)
=>\(m^2< 4\)
=>-2<m<2
Cho hàm số y = x - 2 x - 1 . Xét các mệnh đề sau:
1. Hàm số đã cho đồng biến trên - ∞ ; 1 ∪ 1 ; + ∞ .
2. Hàm số đã cho đồng biến trên ℝ \ { 1 } .
3. Hàm số đã cho đồng biến trên từng khoảng xác định.
4. Hàm số đã cho đồng biến trên các khoảng - ∞ ; - 1 và - 1 ; + ∞ .
Số mệnh đề đúng là:
A. 3
B. 2
C. 1
D. 4
Cho hàm số y = x − 2 x − 1 . Xét các mệnh đề sau:
1. Hàm số đã cho đồng biến trên − ∞ ; 1 ∪ 1 ; + ∞ .
2. Hàm số đã cho đồng biến trên ℝ \ 1 .
3. Hàm số đã cho đồng biến trên từng khoảng xác định.
4. Hàm số đã cho đồng biến trên các khoảng − ∞ ; − 1 và − 1 ; + ∞ .
Số mệnh đề đúng là
A. 3
B. 2
C. 1
D. 4
Cho hàm số y = x − 2 x − 1 . Xét các mênh đề sau
1.Hàm số đã cho đồng biến trên − ∞ ; 1 ∪ 1 ; + ∞ .
2.Hàm số đã cho đồng biến trên ℝ \ 1 .
3.Hàm số đã cho đồng biến trên từng khoảng xác định.
4.Hàm số đã cho đồng biến trên các khoảng − ∞ ; − 1 v à − 1 ; + ∞ .
Số mệnh đề đúng là
A.3
B.2
C.1
D.4
Đáp án C
Có y ' = 1 x − 1 2 . Hàm số đồng biến trên tứng khoảng ( ta chỉ xét khoảng liên tục, không bị ngắt khoảng).
1. Hàm số y =2sinx+cos2x , x€ [0;π) đồng biến trên khoảng nào? 2. Hàm số y=|x^2-2x-3| nghịch buến trên khoảng nào?
1.
\(y'=2cosx-2sin2x=2cosx-4sinx.cosx=2cosx\left(1-2sinx\right)\)
\(y'=0\Rightarrow\left[{}\begin{matrix}cosx=0\\sinx=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}\\x=\dfrac{\pi}{6}\\x=\dfrac{5\pi}{6}\end{matrix}\right.\)
Hàm đồng biến trên các khoảng \(\left(0;\dfrac{\pi}{6}\right)\) và \(\left(\dfrac{\pi}{2};\dfrac{5\pi}{6}\right)\)
2.
Xét hàm \(f\left(x\right)=x^2-2x-3\)
\(f\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)
\(f'\left(x\right)=2x-2=0\Rightarrow x=1\)
Hàm nghịch biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(1;3\right)\)
Vẽ đồ thị của các hàm số \(y=3x+1\) và \(y=-2x^2\). Hãy cho biết:
a) Hàm số \(y=3x+1\) đồng biến hay nghịch biến trên R.
b) Hàm số \(y=-2x^2\) đồng biến hay nghịch biến trên mỗi khoảng: \(\left(-\infty;0\right)\) và \(\left(0;+\infty\right)\)
Vẽ đồ thị \(y = 3x + 1;y = - 2{x^2}\)
a) Trên \(\mathbb{R}\), đồ thị \(y = 3x + 1\) đi lên từ trái sang phải, như vậy hàm số \(y = 3x + 1\) đồng biến trên \(\mathbb{R}\)
b) Trên khoảng \(\left( { - \infty ;0} \right)\), đồ thị \(y = - 2{x^2}\)đi lên từ trái sang phải với mọi \(x \in \left( { - \infty ;0} \right)\) , như vậy hàm số đồng biến trên \(\left( { - \infty ;0} \right)\)
Trên khoảng \(\left( {0; + \infty } \right)\), đồ thị \(y = - 2{x^2}\)đi xuống từ trái sang phải với mọi \(x \in \left( {0; + \infty } \right)\) , như vậy hàm số nghịch biến trên \(\left( {0; + \infty } \right)\)